0. 背景 经过了rcnn,spp,fast rcnn, faster rcnn,yolo,这里又到了ssd模型. faster rcnn的贡献是将候选框区域提取的部分也集成到CNN中去,并且与对象的分类和候选框区域微调共享同一个基CNN,而其中还是存在需要做4步训练的方法(作者虽然后续也实现了近似联合训练的方法): 不过yolo就比较暴力,直接将最后的feature map硬编码成7*7的网格,每个神经元就是一个如faster rcnn中RPN的划框,先验的将faster rcnn的RPN的工