当你的深度学习模型变得很多时,选一个确定的模型也是一个头痛的问题.或者你可以把他们都用起来,就进行模型融合.我主要使用stacking和blend方法.先把代码贴出来,大家可以看一下. import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import roc_curve SEED = 222 np.random.seed(SEED) from sklearn.mod
1. blending 需要得到各个模型结果集的权重,然后再线性组合. """Kaggle competition: Predicting a Biological Response. Blending {RandomForests, ExtraTrees, GradientBoosting} + stretching to [0,1]. The blending scheme is related to the idea Jose H. Solorzano presente
转载:https://github.com/LearningFromBest/CMB-credit-card-department-prediction-of-purchasing-behavior-in-consumer-finance-scenario/blob/master/stacking.py from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone from sklearn.mode
读懂stacking:模型融合Stacking详解/Stacking与Blending的区别 https://blog.csdn.net/u014114990/article/details/50819948 https://mlwave.com/kaggle-ensembling-guide/ The basic idea behind stacked generalization is to use a pool of base classifiers, then using another
主角torch.nn.LSTM() 初始化时要传入的参数 | Args: | input_size: The number of expected features in the input `x` | hidden_size: The number of features in the hidden state `h` | num_layers: Number of recurrent layers. E.g., setting ``num_layers=2`` | would mean st