首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
STM32F4 正交编码器接口
2024-11-05
玩转X-CTR100 l STM32F4 l 电机正交编码器
我造轮子,你造车,创客一起造起来!塔克创新资讯[塔克社区 www.xtark.cn ][塔克博客 www.cnblogs.com/xtark/ ] 本文介绍X-CTR100控制器的电机正交编码器,X-CTR100具有2路32位AB项正交编码器和3路16位正交编码器,共5路. 可用于电机转速和角度测量,用于智能车.机械臂.机器人制作. 原理 什么是正交?如果两个信号相位相差90度,则这两个信号称为正交.由于两个信号相差90度,因此可以根据两个信号哪个先哪个后来判断方向. 正交编码器(Quadrat
STM32f103 定时器之编码器接口模式
背景 买了个Arduino的旋转编码器模块,配合STM32定时器的编码器模式实现了旋转角度以及圈数的计数.这种旋转编码器我能想到的实际应用场景暂时只有实体音量旋钮,鼠标的滚轮等,所以只实现了计数.阅读Arduino关于该编码器的介绍,该编码器还可以实现旋转的速度.加速度的计算.应该算是算法层级的吧,还没做到实际应用,暂时不深究,本篇仅仅对旋转编码器的原理以及STM32编码器接口模式的配置使用方法做个简介. 正文 编码器分类: 按工作原理:光电式.磁电式和触点电刷式: 按码盘的刻孔方式:增量式和绝
STM32伺服编码器接口
在STM32的高级定时器和一般定时器中有Encoder interface mode(编码器接口),TI1和TI2分别对应TIM_CH1 和TIM_CH2 通道. 一.计数规则如下: 表55的是编码器不同的信号下计数方向. 1.仅在TI1边沿计数:上升沿触发时,若对应TI2为低电平,则计数器向下计数:对应为高电平,则向上计数.如下图,在1和2处,TI1的上升沿对应TI2为低电平,所以计数器向上计数:同样的,在3处则相反. 2.在TI1和TI2边沿计数:若TI1.TI2上升沿捕捉时,TI1上升边沿
STM32正交编码器驱动电机
1.编码器原理 什么是正交?如果两个信号相位相差90度,则这两个信号称为正交.由于两个信号相差90度,因此可以根据两个信号哪个先哪个后来判断方向. 这里使用了TI12模式,例如当T1上升沿,T2在低电平时:T1下降沿,T2在高电平时,向上计数,这样的好处是当有毛刺产生的时候,会自动+1 -1过滤掉毛刺. 2.编码器的中断 由于编码器是基于定时器的,所以编码器的中断实际上就是定时器的中断.也就是说定时器是每隔一定时间加一个数(或减一个数 ),当数到达预设值时就产生中断,而编码器是每一
STM32CubeMx配置正交编码器遇到的问题
配置时参考了这个哥们的方法: http://www.eemaker.com/stm32cubemx-encoder.html 然后我的配置是这样的 配置是没有问题. 调用时出现了问题. 由于配置完了,我担心它立即生效,怕影响运动,然后我就想配置完先把TIM3的时钟关闭: __HAL_RCC_TIM3_CLK_DISABLE(); 这样先不让它使能. 谁知这样是不对的,即使后面我用了MX_TIM3_Init();对定时器进行再次彻底初始化,也是没有用,读到定时器值一直为0. 后来细看了一下那哥们的
STM32-增量式旋转编码器测量
Development kit:MDK5.14 IDE:UV4 MCU:STM32F103C8T6 一.增量式旋转编码器 1.简介 编码器(encoder)是将信号(如比特流)或数据进行编制.转换为可用以通讯.传输和存储的信号形式的设备.编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺. 按照读出方式编码器可以分为接触式和非接触式两种: 按照工作原理编码器可分为增量式和绝对式两类.增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小.
STM32 TIM 编码器模式采集编码器信号
layout: post tags: [STM32] comments: true 文章目录 @[toc] 什么是正交解码? 编码器接口模式 标准库接口 TIM_TimeBaseInitTypeDef TIM_ICInitTypeDef 寄存器接口 检测方法 标准库配置 关于计数器溢出的情况 总结 什么是正交解码? 对于常用增量式编码器,光学编码器,采用带槽圆盘,一侧是发射光线的发射端,而光电晶体管在相对的一侧.当圆盘转动时,光程被阻断,得到的脉冲指示轴的转动和方向.通常的说法是1000线的编码
STM32 HAL库学习系列第5篇 定时器TIM---编码器接口模式配置
cube基本配置,外设开启编码器,串口2 可能大家在设置的时候有这个错误 错误:error: #20: identifier "TIM_ICPOLARITY_BOTHEDGE" is undefined 意思是,高级.通用定时器不能用BothEdge,只有基本定时器才能用BothEdge 针对具体的芯片举几个例子:基本都是大同小异 F4系列: /* 编码器初始化及使能编码器模式 */ ENCODER_TIMx_Init(); HAL_TIM_Encoder_Start(&ht
STM32—TIMx实现编码器四倍频
文章目录 一.储备知识 二.TIMx的编码器模式介绍 1.计数边沿设置 2.选择极性和使能 3.使能 4.计数方向 三.代码部分 一.储备知识 通过STM32的定时器编码器接口模式对编码器进行四倍频,并使用M法测速得到小车电机的速度信息. 编码器的相关知识之前介绍过:编码器s M法测速:读取每10ms的脉冲数,以脉冲数的多少代表速度的快慢. 二.TIMx的编码器模式介绍 TIMx的编码器模式,每个定时器只能测量一组AB相的值(编码器的AB相),分别使用CH1和CH2接AB相,通过判断CH1和CH
Nuttx操作系统
前几天答辩的时候看到有同学在用,回来后查了点资料. 来源:天又亮了 1 NuttX 实时操作系统 NuttX 是一个实时操作系统(RTOS),强调标准兼容和小型封装,具有从8位到32位微控制器环境的高度可扩展性.NuttX 主要遵循 Posix 和 ANSI 标准,对于在这些标准下不支持的功能,或者不适用于深度嵌入环境的功能(如 fork()),采用来自 Unix 和常见 RTOS (如 VxWorks)的额外的标准 API.NuttX 的第一个版本由 Gregory Nutt 于 2007
第二章 LM3S USB处理器
2.1 LM3S处理器简介 Luminary Micr公司Stellaris所提供一系列的微控制器是首款基于Cortex-m3的控制器,它们为对成本尤其敏感的嵌入式微控制器应用方案带来了高性能的32位运算能力. 这些具备领先技术的芯片使用户能够以传统的8位和16位器件的价位来享受32位的性能,而且所有型号都是以小占位面积的封装形式提供. <ignore_js_op> Stellaris系列芯片能够提供高效的性能.广泛的集成功能以及按照要求定位的选择,适用于各种关注成本并明确要求具有的过程控制以
Stm32高级定时器(四)
Stm32高级定时器(四) 1 编码器接口模式 1.1 编码器原理 什么是正交?如果两个信号相位相差90度,则这两个信号称为正交.由于两个信号相差90度,因此可以根据两个信号哪个先哪个后来判断方向.根据每个信号脉冲数量的多少及整个编码轮的周长就可以算出当前行走的距离.如果再加上定时器的话还可以计算出速度. 增量式旋转编码器通过内部两个光敏接受管转化其角度码盘的时序和相位关系,得到其角度码盘角度位移量增加(正方向)或减少(负方向). A,B两点对应两个光敏接受管,A,B两点间距为 S2 ,码盘的光
NuttX 介绍
(嵌入式 实时操作系统 rtos nuttx 7.1) NuttX 介绍 转载请注明出处:http://blog.csdn.net/zhumaill/article/details/24197637 1 NuttX 实时操作系统 NuttX 是一个实时操作系统(RTOS).强调标准兼容和小型封装,具有从8位到32位微控制器环境的高度可扩展性.NuttX 主要遵循 Posix 和 ANSI 标准,对于在这些标准下不支持的功能,或者不适用于深度嵌入环境的功能(如 fork()),採用来自 Uni
SLAM+语音机器人DIY系列:(四)差分底盘设计——2.stm32主控软件设计
摘要 运动底盘是移动机器人的重要组成部分,不像激光雷达.IMU.麦克风.音响.摄像头这些通用部件可以直接买到,很难买到通用的底盘.一方面是因为底盘的尺寸结构和参数是要与具体机器人匹配的:另一方面是因为底盘包含软硬件整套解决方案,是很多机器人公司的核心技术,一般不会随便公开.出于强烈的求知欲与学习热情,我想自己DIY一整套两轮差分底盘,并且将完整的设计过程公开出去供大家学习.说干就干,本章节主要内容: 1.stm32主控硬件设计 2.stm32主控软件设计 3.底盘通信协议 4.底盘ROS驱动开发
STM32F103之定时器学习记录
/==============翻译STM32F103开发手册定时器部分========================/ 14 高级控制计时器(TIM1和TIM8) 14.1 TIM1和TIM8介绍 高级控制定时器(TIM1和TIM8)由16位的自动重载计数器组成, 计数器由可编程的预标定器驱动. 它可用于各种各样的目的,包括测量输入信号的脉冲长度(输入捕获), 或者生成输出波形(输出比较,PWM,互补的PWM与死区插入时间). 通过定时器预分频器和RCC时钟控制预分频器, 脉冲的长度和波形周期
有感FOC算法学习与实现总结
文章目录 基于STM32的有感FOC算法学习与实现总结 1 前言 2 FOC算法架构 3 坐标变换 3.1 Clark变换 3.2 Park变换 3.3 Park反变换 4 SVPWM 5 反馈部分 5.1 相电流 5.2 电角度和转速 6 闭环控制 6.1 电流环 6.2 速度环 6.3 位置环 写在最后 基于STM32的有感FOC算法学习与实现总结 1 前言 Field Oriented Control 磁场定向控制 (FOC),FOC是有效换向的公认方法.FOC的核心是估计转子电场的方向.
(stm32f103学习总结)—stm32定时器中断
一.定时器介绍 STM32F1的定时器非常多,由2个基本定时器(TIM6.TIM7).4个通 用定时器(TIM2-TIM5)和2个高级定时器(TIM1.TIM8)组成.基本定 时器的功能最为简单,类似于51单片机内定时器.通用定时器是在基本 定时器的基础上扩展而来,增加了输入捕获与输出比较等功能.高级定 时器又是在通用定时器基础上扩展而来,增加了可编程死区互补输出. 重复计数器.带刹车(断路)功能,这些功能主要针对工业电机控制方面 1.1 通用定时器简介 STM32F1的通用定时器包含一个 16
CPS攻击案例(一)——基于脉冲宽度调制PWM的无人机攻击
本文系原创,转载请说明出处 Please Subscribe Wechat Official Account:信安科研人,获取更多的原创安全资讯 原论文链接:sec22-dayanikli.pdf (usenix.org) 目录 摘要 一 知识背景 1.1 CPS 1.2 脉冲宽度调制PWM 二 攻击方案研究思路 2.1 研究背景 2.2 灵感与动机 2.3 PWM控制执行器的机理 2.3.1 PWM信号携带致动数据 2.3.2 致动器使用PWM的上升沿和下降沿之间的持续时间确定致动数据
STM32之通用定时器
广大的互联网的大家早上中午晚上..又好..没错了..我又来了..写博客不是定时的..为什么我要提写博客不是定时的呢??聪明的人又猜到我要说什么了吧.有前途.其实我还是第一次听到定时器有通用和高级之分的..原来定时器也有分等级的呀..STM32果真不简单呀.. 好了..为啥名为通用呢?.恕小弟不才.目前只理解为:因为可以通用,所以名为通用定时器.那可以通用在哪些方面呢?那通用的原理又是什么呢?咦,不急不急..待我慢慢翻开“葵花宝典”第STM32篇之通用定时器:葵花兄,近来可好?咱们又见面了.能告诉
mina框架详解
转:http://blog.csdn.net/w13770269691/article/details/8614584 mina框架详解 分类: web2013-02-26 17:13 12651人阅读 评论(5) 收藏 举报 Apache Mina Server 是一个网络通信应用框架,也就是说,它主要是对基于TCP/IP.UDP/IP协议栈的通信框架(当然,也可以提供JAVA 对象的序列化服务.虚拟机管道通信服务等),Mina 可以帮助我们快速开发高性能.高扩展性的网络通信应用,Mina
热门专题
wpf 自定义ListBox控件
同一局域网 怎么访问jenkins
mac hadoop安装
C# MongoCollection筛选
gradle 中的buildscript
vscode 在左侧Git 显示修改内容
vue点击按钮切换div颜色
lodop 固定位置打印
vue部署http,后端https
update字段提示更新分区关键字列将导致分区的更改
html 音乐盒横向
android studio刷新布局在哪里
apt安装docker
控制台程序 按任意键继续运行
androidstudio 提示信息toast
pgadmin设置host
浏览器访问resources下图片
sql查找表里的字段另一个表有没有
i218-lm驱动支持server2012吗
androin studio和gedle