The author has a course on web: http://brickisland.net/DDGSpring2016/ It has more reading assignments and sliders which are good for you to understand ddg. ------------------------------------------------------------- DISCRETE DIFFERENTIAL GEOMETRY :
著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:匿名用户链接:http://www.zhihu.com/question/30087053/answer/47815698来源:知乎 Benson Farb:晨兴通俗报告How to do Mathematics文稿(z) 晨兴通俗报告How to do Mathematics文稿(任金波整理,欢迎纠错) 以下是我整理并翻译成汉语的,本人才疏学浅,有些地方实在没听懂,其余部分难免也有很多错误,翻译的汉语对演讲者的意思的传达
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2119 11178 - Morley's Theorem Time limit: 3.000 seconds Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem stat
Problem D Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below
Morley’s Theorem Input: Standard Input Output: Standard Output Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-s
Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below t
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2119 题面:Morleys theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral
w https://en.wikipedia.org/wiki/Ramsey's_theorem https://zh.wikipedia.org/wiki/拉姆齐定理 在组合数学上,拉姆齐(Ramsey)定理,又称拉姆齐二染色定理,是要解决以下的问题:要找这样一个最小的数n,使得n个人中必定有 k 个人相识或 l 个人互不相识. 这个定理以弗兰克·普伦普顿·拉姆齐命名,1930年他在论文On a Problem in Formal Logic(<形式逻辑上的一个问题>)证明了R(3,3)=6
* Source code The following is a C code for x component of 2nd stokes wave ××××××××××××××××××××× /*second order stokes wave at inlet Boundary, wave velocity components are from equations 3.27 and 3.58, Pengzhi lin. numerical modeling of water waves.