目录 Overview Quick Example Programming Model Basic Concepts Handling Event-time and Late Data Fault Tolerance Semantics API using Datasets and DataFrames Creating streaming DataFrames and streaming Datasets Input Sources Schema inference and partition
Structured Streaming编程 Programming Guide Overview Quick Example Programming Model Basic Concepts Handling Event-time and Late Data Fault Tolerance Semantics API using Datasets and DataFrames Creating streaming DataFrames and streaming Datasets Input
简介 Structured Streaming is a scalable and fault-tolerant stream processing engine built on the Spark SQL engine. You can express your streaming computation the same way you would express a batch computation on static data. The Spark SQL engine will t
Overview A Quick Example Basic Concepts Linking Initializing StreamingContext Discretized Streams (DStreams) Input DStreams and Receivers Transformations on DStreams Output Operations on DStreams DataFrame and SQL Operations MLlib Operations Caching
Design Patterns for using foreachRDD dstream.foreachRDD是一个强大的原语,允许将数据发送到外部系统.然而,了解如何正确有效地使用该原语很重要.避免一些常见的错误如下. 通常向外部系统写入数据需要创建一个连接对象(例如与远程服务器的TCP连接),并使用它将数据发送到远程系统.为此,开发人员可能无意中尝试在Spark驱动程序创建连接对象,然后尝试在Spark workers中使用它来将记录保存在RDD中.例如(在Scala中): dstream.
事情经过:之前该topic(M_A)已经存在,而且正常使用structured streaming消费了一段时间,后来删除了topic(M_A),重新创建了topic(M-A),程序使用新创建的topic(M-A)进行实时统计操作,使用structured streaming执行过程中抛出了一下异常: // :: INFO utils.AppInfoParser: Kafka version : -kafka- // :: INFO utils.AppInfoParser: Kafka comm
不多说,直接上干货! https://beam.apache.org/get-started/wordcount-example/ 来自官网的: The WordCount examples demonstrate how to set up a processing pipeline that can read text, tokenize the text lines into individual words, and perform a frequency count on each o
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Apache Kafka™ is a distributed streaming platform. What exactly does that mean? Kafka是一个分布式流数据处理平台.这到底是什么意思呢? We think of a streaming platform as having three key capabilities: 我们认为一个流数据处理平台必须