摘抄“GPU Programming And Cg Language Primer 1rd Edition” 中文名“GPU编程与CG语言之阳春白雪下里巴人”第二章. 图形绘制管线描述GPU渲染流程,即“给定视点.三维物体.光源.照明模式,和纹理等元素,如何绘制一幅二维图像”.本章内容涉及GPU的基本流程和实时绘制技术的根本原理,在这些知识点之上才能延伸发展出基于GPU的各项技术,所以本章的重要性怎么说都不为过.欲登高而穷目,勿筑台于浮沙! 本章首先讨论整个绘制管线(不仅仅是GPU绘制)所包含的
决策树decision tree 什么是决策树输入:学习集输出:分类觃则(决策树) 决策树算法概述 70年代后期至80年代初期,Quinlan开发了ID3算法(迭代的二分器)Quinlan改迚了ID3算法,称为C4.5算法1984年,多位统计学家在著名的<Classification and regression tree>书里提出了CART算法ID3和CART几乎同期出现,引起了研究决策树算法的旋风,至今已经有多种算法被提出
DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和K-Means,BIRCH这些一般只适用于凸样本集的聚类相比,DBSCAN既可以适用于凸样本集,也可以适用于非凸样本集.下面我们就对DBSCAN算法的原理做一个总结. 1. 密度聚类原理 DBSCAN是一种基于密度的聚类算法,这类密度聚类算法一般假定类别可以通过样本分布的紧密程度决定.同一类别的样本,他们