支持向量机原理 支持向量机要解决的问题其实就是寻求最优分类边界.且最大化支持向量间距,用直线或者平面,分隔分隔超平面. 基于核函数的升维变换 通过名为核函数的特征变换,增加新的特征,使得低维度空间中的线性不可分问题变为高维度空间中的线性可分问题. 线性核函数:linear,不通过核函数进行维度提升,仅在原始维度空间中寻求线性分类边界. 基于线性核函数的SVM分类相关API: import sklearn.svm as svm model = svm.SVC(kernel='linear') mo