一.python求绝对值的三种方法 1.条件判断 2.内置函数abs() 3.内置模块 math.fabs 1.条件判段,判断大于0还是小于0,小于0则输出相反数即可 # 法1:使用条件判断求绝对值 def abs_value1(): # input返回str,需转换为浮点数的格式 a = float(input('1.请输入一个数字:')) if a >= 0: a = a else: a = -a print('绝对值为:%f' % a) 2.abs()函数 # 法2:使用内置函数求绝对值
Tensor Tensor是PyTorch中的重要数据结构,可认为是一个高维数组,Tensor与numpy的ndarrays类似,但Tensor可以使用GPU加速 import torch as t#import A as B,给予A库一个B的别称,帮助记忆 #构建5*3矩阵,只是分配了空间,未初始化 x=t.Tensor(5,3) print(x) print(x.size())#查看x的形状 print(x.size()[0],x.size(1))#查看列的个数,两种写法等价 print(t
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 Tensor Tensor可以是一个数(标量).一维数组(向量).二维数组(矩阵)或更高维的数组(高阶数据) Tensor和numpy的ndarrays类似,不同在于pytorch的tensor支持GPU加速 导包: from __future__ import print_function import torch as t 判断是否
原文:https://blog.csdn.net/hustchenze/article/details/79154139 Pytorch的数据类型为各式各样的Tensor,Tensor可以理解为高维矩阵.与Numpy中的Array类似.Pytorch中的tensor又包括CPU上的数据类型和GPU上的数据类型,一般GPU上的Tensor是CPU上的Tensor加cuda()函数得到.通过使用Type函数可以查看变量类型.一般系统默认是torch.FloatTensor类型.例如data = to