首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
tensorflow图像识别教程
2024-11-09
TensorFlow图像识别(物体分类)入门教程
本文主要介绍了如何使用TensorFlow环境运行一个最基本的图像分类器(Win10系统).源码地址https://github.com/sourcedexter/tfClassifier/tree/master/image_classification (这个大神好像改名了,原来叫akshaypai来着) 一.基础概念介绍 1.物体分类的思想 物体分类,也就是训练系统识别各个物体,如猫咪.狗狗.汽车等.TensorFlow是谷歌开发出的人工智能学习系统,相当于我们的运行环境. 2.神经网络与I
windows下用pycharm安装tensorflow简易教程
https://blog.csdn.net/heros_never_die/article/details/79760616 最近开始学习深度学习的相关知识,准备实战一下,看了一些关于tensorflow安装的博客,绕了一些弯,因此来填一下坑(多余安装的或者非windows),主要围绕使用pycharm时需要用到tensorflow的安装过程. 环境:windows10专业版.只是想简单跑一下tensorflow的话,安装过程真的很简单. 如果你有“安装IDE并关联编译器"的经验,不想看复杂的安
TensorFlow 安装教程
1.准备好Anaconda环境 tensorflow是属于很高层的应用.高层应用的一个比较大的麻烦就是需要依赖的底层的东西很多,如果底层依赖没有弄好的话,高层应用是没法玩转的. 在极客学院有关tensorflow的教程中,提到了这样几种安装方式:Pip, Docker, Virtualenv, Anaconda 或 源码编译的方法安装 TensorFlow.在这里,我强烈推荐大家使用Anaconda的方式安装!因为采用这种方式安装的时候,相当于将所有的底层依赖细节全部已经打包给封装好了!并且,A
(转)干货|这篇TensorFlow实例教程文章告诉你GANs为何引爆机器学习?(附源码)
干货|这篇TensorFlow实例教程文章告诉你GANs为何引爆机器学习?(附源码) 该博客来源自:https://mp.weixin.qq.com/s?__biz=MzA4NzE1NzYyMw==&mid=2247492203&idx=5&sn=3020c3a43bd4dd678782d8aa24996745&chksm=903f1c73a74895652ee688d070fd807771e3fe6a8947f77f3a15a44a65557da0313ac5ad592c
Tensorflow快餐教程(1) - 30行代码搞定手写识别
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/lusing/article/details/79965160 去年买了几本讲tensorflow的书,结果今年看的时候发现有些样例代码所用的API已经过时了.看来自己维护一个保持更新的Tensorflow的教程还是有意义的.这是写这一系列的初心. 快餐教程系列希望能够尽可能降低门槛,少讲,讲透. 为了让大家在一开始就看到一个美好的场景,而不
TensorFlow DeepLab教程初稿-tensorflow gpu安装教程
TensorFlow DeepLab教程初稿-tensorflow gpu安装教程 商务合作,科技咨询,版权转让:向日葵,135-4855__4328,xiexiaokui#qq.com Summary: DeepLab需要1.10以上版本. 本日志详细记录在两台不同笔记本电脑安装/更新 TensorFlow-GPU的具体过程 这是本人第3次,4次安装tf,这两次是gpu版. 第一次是安装cpu版,第二次是在python2.7 arcpy环境下安装32位 tf,但不能运行.第三次安装成功,但电脑
云栖社区 Tensorflow快餐教程
云栖社区 Tensorflow快餐教程(1) - 30行代码搞定手写识别:https://yq.aliyun.com/articles/582122云栖社区 Tensorflow快餐教程(2) - 标量运算:https://yq.aliyun.com/articles/582490云栖社区 Tensorflow快餐教程(3) - 向量:https://yq.aliyun.com/articles/584202云栖社区 Tensorflow快餐教程(4) - 矩阵:https://yq.aliyu
Tensorflow学习教程------过拟合
Tensorflow学习教程------过拟合 回归:过拟合情况 / 分类过拟合 防止过拟合的方法有三种: 1 增加数据集 2 添加正则项 3 Dropout,意思就是训练的时候隐层神经元每次随机抽取部分参与训练.部分不参与 最后对之前普通神经网络分类mnist数据集的代码进行优化,初始化权重参数的时候采用截断正态分布,偏置项加常数,采用dropout防止过拟合,加三层隐层神经元,最后的准确率达到97%以上.代码如下 # coding: utf-8 # 微信公众号:深度学习与神经网络 # G
Tensorflow学习教程------代价函数
Tensorflow学习教程------代价函数 二次代价函数(quadratic cost): 其中,C表示代价函数,x表示样本,y表示实际值,a表示输出值,n表示样本的总数.为简单起见,使用一个样本为例进行说明,此时二次代价函数为: 假如我们使用梯度下降法(Gradient descent)来调整权值参数的大小,权值w和偏置b的梯度推导如下: 其中,z表示神经元的输入,σ表示激活函数.w和b的梯度跟激活函数的梯度成正比,激活函数的梯度越大,w和b的大小调整得越快,训练收敛得就越快.假设我
Tensorflow学习教程------读取数据、建立网络、训练模型,小巧而完整的代码示例
紧接上篇Tensorflow学习教程------tfrecords数据格式生成与读取,本篇将数据读取.建立网络以及模型训练整理成一个小样例,完整代码如下. #coding:utf-8 import tensorflow as tf import os def read_and_decode(filename): #根据文件名生成一个队列 filename_queue = tf.train.string_input_producer([filename]) reader = tf.TFRecord
想3分钟搭建图像识别系统?这里有一份TensorFlow速成教程(转)
http://www.voidcn.com/article/p-wyaahqji-dr.html 从我们见到的各种图像识别软件来看,机器似乎能认出人脸.猫.狗.花草.各种汽车等等日常生活中出现的物体,但实际上,这有一个前提:你要用这些类别的图像,对它进行过训练. 确切地说,该叫它"图像分类". 建立一个图像分类器并不复杂,技术博客Source Dexter上最近发表的一篇文章,介绍了该如何快速用TensorFlow实现图像分类. 以下是小编节选自这篇文章的内容: 在进入正题之前,我们先
Tensorflow学习教程------下载图像识别模型inceptionV3
# coding: utf-8 import tensorflow as tf import os import tarfile import requests #inception模型下载地址 inception_pretrain_model_url = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz' #模型存放地址 inception_pretrain_model_dir = "i
[tensorflow in a nutshell] tensorflow简明教程 (第一部分)
原文链接: https://medium.com/@camrongodbout/tensorflow-in-a-nutshell-part-one-basics-3f4403709c9d#.31jv5ekoy 学习世界上最流行的深度学习框架的最快最简单的教程 (其实这个系列写的差强人意,但是的确是学习tensflow精简的教程,比较适合新手入门,高手请绕行--------译者注) tensorflow是google公司推出的深度学习框架.深度学习是一类采用多层神经网络的机器学习算法.深度学习的思
Tensorflow学习教程------创建图启动图
Tensorflow作为目前最热门的机器学习框架之一,受到了工业界和学界的热门追捧.以下几章教程将记录本人学习tensorflow的一些过程. 在tensorflow这个框架里,可以讲是若数据类型,也就是说不严格声明数据是什么类型,因为在整个过程中玩的都是向量,或者说矩阵和数组,所有的数据都被看做是一个tensor, 一个或者几个tensor经过一个op(operation)之后,产生新的tensor.首先将所有tensor和op都定义好,然后把这套tensor和op的组合放到默认的图里,用会话
(通用)深度学习环境搭建:tensorflow安装教程及常见错误解决
区别于其他入门教程的"手把手式",本文更强调"因"而非"果".我之所以加上"通用"字样,是因为在你了解了这个开发环境之后,那些很low的错误你就不会犯了. 大家都知道深度学习涉及到大量的模型.算法,看着那些乱糟糟的公式符号,心中一定是"WTF".我想说的是,这些你都不要管,所谓车到山前必有路. 所需安装包 通常以我的习惯是以最简单的方式来接触一门新的技术,并且尽量抛弃新的(边缘)技术的介入,如果因为一些其他
TensorFlow.org教程笔记(二) DataSets 快速入门
本文翻译自www.tensorflow.org的英文教程. tf.data 模块包含一组类,可以让你轻松加载数据,操作数据并将其输入到模型中.本文通过两个简单的例子来介绍这个API 从内存中的numpy数组读取数据. 从csv文件中读取行 基本输入 对于刚开始使用tf.data,从数组中提取切片(slices)是最简单的方法. 笔记(1)TensorFlow初上手里提到了训练输入函数train_input_fn,该函数将数据传输到Estimator中: def train_input_fn(fe
TensorFlow.org教程笔记(一)Tensorflow初上手
本文同时也发布在自建博客地址. 本文翻译自www.tensorflow.org的英文教程. 本文档介绍了TensorFlow编程环境,并向您展示了如何使用Tensorflow解决鸢尾花分类问题. 先决条件 在本文档中使用示例代码之前,您需要执行以下操作: 确认安装了Tensorflow 如果在Anaconda的虚拟环境下安装了TF,激活你的TF环境 通过以下命令安装或者升级pandas pip install pandas 获取示例代码 按照以下步骤获取我们将要全程使用的示例代码 通过输入以
tensorflow 经典教程及案例
导语:本文是TensorFlow实现流行机器学习算法的教程汇集,目标是让读者可以轻松通过清晰简明的案例深入了解 TensorFlow.这些案例适合那些想要实现一些 TensorFlow 案例的初学者.本教程包含还包含笔记和带有注解的代码. 第一步:给TF新手的教程指南 1:tf初学者需要明白的入门准备 机器学习入门笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisit
TensorFlow安装教程(ubuntu 18.04)
此教程的硬件条件: 1.Nvidia GPU Geforce390及以上 2.Ubuntu 18.04操作系统 3.Anaconda工具包 如果python版本为3.7及以上,使用如下命令降级到3.6: conda search python //搜索可用的python版本,这条命令非必须 conda install python=3.6.7 //安装3.6版本中的最新版 python --version //查看python版本,如果是3.6.7,那就可以了 接下来,按照下面这个视频的教程一步
Windows上安装tensorflow 详细教程
原博客转载自:https://www.cnblogs.com/lvsling/p/8672404.html 一, 前言:本次安装tensorflow是基于Python的,安装Python的过程不做说明(既然决定按,Python肯定要先了解啊):本次教程是windows下Anaconda安装Tensorflow的过程(cpu版,显卡不支持gpu版的...) 二, 安装环境:(tensorflow支持的系统是64位的,windows和linux,mac都需要64位) windows7(其实和wind
热门专题
继承GraphicRaycaster
@click.native.prevent vue 动态
blade bazel区别
数据泵network迁移Oracle分区
linux系统怎么查看串口使用情况
vue-awesome-swiper修改loop
suds.sax.text.Text转为dict
ar导航能安装启动后闪退
flask 遍历 数组
yapi解决接口自动鉴权
echart图窗口改变重新绘制html
wtforms里面的validate什么意思
学生成绩管理系统Java 计算每个学生的平均成绩
Navicat 16 for MySQL破解
Panel重写paint被调用两次
cia301协议中文版
centos 启动修复
用group by 取前5数据
WIN10修改注册表不重启
监控openwrt流量