1.指定GPU运算 如果安装的是GPU版本,在运行的过程中TensorFlow能够自动检测.如果检测到GPU,TensorFlow会尽可能的利用找到的第一个GPU来执行操作. 如果机器上有超过一个可用的GPU,除了第一个之外的其他的GPU默认是不参与计算的.为了让TensorFlow使用这些GPU,必须将OP明确指派给他们执行.with......device语句能够用来指派特定的CPU或者GPU执行操作: import tensorflow as tf import numpy as np w
TensorFlow指定GPU/CPU进行训练和输出devices信息 1.在tensorflow代码中指定GPU/CPU进行训练 with tf.device('/gpu:0'): .... with tf.device('/gpu:1'): ... with tf.device('/cpu:0'): ... 2.输出devices的信息 在指定devices的时候往往不知道具体的设备信息,这时可用下面的代码查看对应的信息 进入Python环境 from tensorflow.python.c
TensorFlow指定CPU和GPU方法 TensorFlow 支持 CPU 和 GPU.它也支持分布式计算.可以在一个或多个计算机系统的多个设备上使用 TensorFlow. TensorFlow 将支持的 CPU 设备命名为"/device:CPU:0"(或"/cpu:0"),第 i 个 GPU 设备命名为"/device:GPU:I"(或"/gpu:I"). 如前所述,GPU 比 CPU 要快得多,因为它们有许多小的内
Profiling GPU Rendering Walkthrough 1.In this document Prerequisites Profile GPU Rendering $adb shell dumpsys gfxinfo You should also read Debug GPU Overdraw Walkthrough Hierarchy Viewer Walkthrough This walkthrough shows how to use Profile GPU Rende
Debug GPU Overdraw Walkthrough 1.In this document Prerequisites Visualizing Overdraw You should also read Profile GPU Rendering Walkthrough Hierarchy Viewer Walkthrough This walkthrough shows how to visualize overdraw on your mobile device by color-c
https://stackoverflow.com/questions/38009682/how-to-tell-if-tensorflow-is-using-gpu-acceleration-from-inside-python-shell 方法1 from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) 方法2 方法3 import tensorflow as tf with
本文首发于个人博客https://kezunlin.me/post/95370db7/,欢迎阅读最新内容! keras multi gpu training Guide multi_gpu_model import tensorflow as tf from keras.applications import Xception from keras.utils import multi_gpu_model import numpy as np G = 8 batch_size_per_gpu =
在运行maskrcnn时,会碰到训练不动的问题,就卡在这儿 UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory. "Converting sparse IndexedSlices to a dense Tensor of unknown shape. " Epoch 1/10 image_id