首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
TensorFlow读取训练好的pd文件预测
2024-11-03
tensorflow使用pb文件进行模型预测
tensorflow读取训练数据方法
1. 预加载数据 Preloaded data # coding: utf-8 import tensorflow as tf # 设计Graph x1 = tf.constant([2, 3, 4]) x2 = tf.constant([4, 0, 1]) y = tf.add(x1, x2) with tf.Session() as sess: print sess.run(y) # output: # [6 3 5] 预加载数据方式是将训练数据直接内嵌到tf的图中,需要提前将数据加载到内存
Tensorflow 将训练模型保存为pd文件
前言 保存 模型有2种方法. 方法 1.使用TensorFlow模型保存函数 save = tf.train.Saver() ...... saver.save(sess,"checkpoint/model.ckpt",global_step=step)* 得到3个结果 model.ckpt-129220.data-00000-of-00001#保存了模型的所有变量的值. model.ckpt-129220.index model.ckpt-129220.meta # 保存了graph
tensorflow 读取训练集文件 from Hadoop
1.代码配置 filename_queue = tf.train.string_input_producer([ "hdfs://namenode:8020/path/to/file1.csv", "hdfs://namenode:8020/path/to/file2.csv", ]) filename_queue = tf.train.string_input_producer([ "hdfs://namenode:9000/path/to/file1.
Tensorflow 用训练好的模型预测
本节涉及点: 从命令行参数读取需要预测的数据 从文件中读取数据进行预测 从任意字符串中读取数据进行预测 一.从命令行参数读取需要预测的数据 训练神经网络是让神经网络具备可用性,真正使用神经网络时,需要对新的输入数据进行预测, 这些输入数据 不像训练数据那样是有目标值(标准答案),而是需要通过神经网络计算来获得预测的结果. 通过命令行参数输入数据: import numpy as np import sys predictData = None argt = sys.argv[1:] # 获取命令
如何用Tensorflow训练模型成pb文件和和如何加载已经训练好的模型文件
这篇薄荷主要是讲了如何用tensorflow去训练好一个模型,然后生成相应的pb文件.最后会将如何重新加载这个pb文件. 首先先放出PO主的github: https://github.com/ppplinday/tensorflow-vgg16-train-and-test 其中的pitcute文件是狗和猫的图片分别15张一共30(别吐槽,只是为了练手学习的233333), train那个就是训练的文件,test这个就是测试的文件. 接着PO主会慢慢讲解相应的步骤. !!!ps:由于PO主也是
Tensorflow读取文件到队列文件
TensorFlow读取二进制文件数据到队列 2016-11-03 09:30:00 0个评论 来源:diligent_321的博客 收藏 我要投稿 TensorFlow是一种符号编程框架(与theano类似),先构建数据流图再输入数据进行模型训练.Tensorflow支持很多种样例输入的方式.最容易的是使用placeholder,但这需要手动传递numpy.array类型的数据.第二种方法就是使用二进制文件和输入队列的组合形式.这种方式不仅节省了代码量,避免了进行dat
在C#下使用TensorFlow.NET训练自己的数据集
在C#下使用TensorFlow.NET训练自己的数据集 今天,我结合代码来详细介绍如何使用 SciSharp STACK 的 TensorFlow.NET 来训练CNN模型,该模型主要实现 图像的分类 ,可以直接移植该代码在 CPU 或 GPU 下使用,并针对你们自己本地的图像数据集进行训练和推理.TensorFlow.NET是基于 .NET Standard 框架的完整实现的TensorFlow,可以支持 .NET Framework 或 .NET CORE , TensorFlow.NET
第十二节,TensorFlow读取数据的几种方法以及队列的使用
TensorFlow程序读取数据一共有3种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFlow图的起始, 让一个输入管道从文件中读取数据. 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). 一 预加载数据 import tensorflow as tf x1 = tf.constant([2,3,4]) x2 = tf.constant([4,0
利用Tensorflow读取二进制CIFAR-10数据集
使用Tensorflow读取CIFAR-10二进制数据集 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 Tensorflow官方文档 tf.transpose函数解析 tf.slice函数解析 CIFAR10/CIFAR100数据集介绍 tf.train.shuffle_batch函数解析 Python urllib urlretrieve函数解析 import os import tarfile import tensorflow as tf from six.moves
tensorflow 保存训练模型ckpt 查看ckpt文件中的变量名和对应值
TensorFlow 模型保存与恢复 一个快速完整的教程,以保存和恢复Tensorflow模型. 在本教程中,我将会解释: TensorFlow模型是什么样的? 如何保存TensorFlow模型? 如何恢复预测/转移学习的TensorFlow模型? 如何使用导入的预先训练的模型进行微调和修改? 这个教程假设你已经对神经网络有了一定的了解.如果不了解的话请查阅相关资料. 1. 什么是TensorFlow模型? 训练了一个神经网络之后,我们希望保存它以便将来使用.那么什么是TensorFlow模型?
在 C/C++ 中使用 TensorFlow 预训练好的模型—— 直接调用 C++ 接口实现
现在的深度学习框架一般都是基于 Python 来实现,构建.训练.保存和调用模型都可以很容易地在 Python 下完成.但有时候,我们在实际应用这些模型的时候可能需要在其他编程语言下进行,本文将通过直接调用 TensorFlow 的 C/C++ 接口来导入 TensorFlow 预训练好的模型. 1.环境配置 点此查看 C/C++ 接口的编译 2. 导入预定义的图和训练好的参数值 // set up your input paths const string pathToGraph = "/ho
在 C/C++ 中使用 TensorFlow 预训练好的模型—— 间接调用 Python 实现
现在的深度学习框架一般都是基于 Python 来实现,构建.训练.保存和调用模型都可以很容易地在 Python 下完成.但有时候,我们在实际应用这些模型的时候可能需要在其他编程语言下进行,本文将通过 C/C++ 间接调用 Python 的方式来实现在 C/C++ 程序中调用 TensorFlow 预训练好的模型. 1. 环境配置 为了能在 C/C++ 中调用 Python,我们需要配置一下头文件和库的路径,本文以 Code::Blocks 为例介绍. 在 Build -> Project opt
云端TensorFlow读取数据IO的高效方式
低效的IO方式 最近通过观察PAI平台上TensoFlow用户的运行情况,发现大家在数据IO这方面还是有比较大的困惑,主要是因为很多同学没有很好的理解本地执行TensorFlow代码和分布式云端执行TensorFlow的区别.本地读取数据是server端直接从client端获得graph进行计算,而云端服务server在获得graph之后还需要将计算下发到各个worker处理(具体原理可以参考视频教程-Tensorflow高级篇:https://tianchi.aliyun.com/compet
tensorflow读取本地MNIST数据集
tensorflow读取本地MNIST数据集 数据放入文件夹(不要解压gz): >>> import tensorflow as tf >>> from tensorflow.examples.tutorials.mnist import input_data >>> MNIST_data =r'D:\tensorflow\mnist' >>> mnist = input_data.read_data_sets(MNIST_data,
[置顶] 云端TensorFlow读取数据IO的高效方式
低效的IO方式 最近通过观察PAI平台上TensoFlow用户的运行情况,发现大家在数据IO这方面还是有比较大的困惑,主要是因为很多同学没有很好的理解本地执行TensorFlow代码和分布式云端执行TensorFlow的区别.本地读取数据是server端直接从client端获得graph进行计算,而云端服务server在获得graph之后还需要将计算下发到各个worker处理(具体原理可以参考视频教程-Tensorflow高级篇:https://tianchi.aliyun.com/compet
深度学习笔记 (二) 在TensorFlow上训练一个多层卷积神经网络
上一篇笔记主要介绍了卷积神经网络相关的基础知识.在本篇笔记中,将参考TensorFlow官方文档使用mnist数据集,在TensorFlow上训练一个多层卷积神经网络. 下载并导入mnist数据集 首先,利用input_data.py来下载并导入mnist数据集.在这个过程中,数据集会被下载并存储到名为"MNIST_data"的目录中. import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=T
迁移学习——使用Tensorflow和VGG16预训模型进行预测
使用Tensorflow和VGG16预训模型进行预测 from:https://zhuanlan.zhihu.com/p/28997549 fast.ai的入门教程中使用了kaggle: dogs vs cats作为例子来让大家入门Computer Vision.不过并未应用到最近很火的Tensorflow.Keras虽然可以调用Tensorflow作为backend,不过既然可以少走一层直接走Tensorflow,那秉着学习的想法,就直接用Tensorflow来一下把. 听说工程上普遍的做
caffe训练自己的图片进行分类预测--windows平台
caffe训练自己的图片进行分类预测 标签: caffe预测 2017-03-08 21:17 273人阅读 评论(0) 收藏 举报 分类: caffe之旅(4) 版权声明:本文为博主原创文章,未经博主允许不得转载. 搭建好caffe环境后,就需要用自己的图片进行分类预测,主要步骤如下,主要参照http://www.cnblogs.com/denny402/p/5083300.html,感谢博主: 1.数据准备,下载待训练的图片集,共5类400张,测试集100张,目录分别为data\re\t
利用阿里云容器服务打通TensorFlow持续训练链路
本系列将利用Docker和阿里云容器服务,帮助您上手TensorFlow的机器学习方案 第一篇:打造TensorFlow的实验环境 第二篇:轻松搭建TensorFlow Serving集群 第三篇:打通TensorFlow持续训练链路 第四篇:利用Neural Style的TensorFlow实现,像梵高一样作画 第五篇:轻松搭建分布式TensorFlow训练集群(上) 本文是该系列中的第三篇文章, 将为您介绍如何利用阿里云的服务快速搭建TensorFlow从训练到服务的交付平台. 随着goog
C#项目实例中读取并修改App.config文件
C#项目是指一系列独特的.复杂的并相互关联的活动,这些活动有着一个明确的目标或目的,必须在特定的时间.预算.资源限定内,依据规范完成.项目参数包括项目范围.质量.成本.时间.资源. 1. 向C#项目实例中的项目添加app.config文件:右击C#项目实例中项目名称,选择“添加”→“添加新建项”,在出现的“添加新项”对话框中,选择“添加应用程序配置文件”:如果项目以前没有配置文件,则默认的文件名称为“app.config”,单击“确定”.出现在设计器视图中的app.config文件为: <?xm
热门专题
C# List<数组> 去重
java cxf webservice服务器连接超时设置
安卓显示 UVC 采集卡
python如何获取dataframe第几行第几列的值
需要class,interface或enum怎么解决
nestJs使用webscoket
c# radioButton单击取消选中
group by练习题
pointzm转为point
prolog应用场景
web自动化测试selenium请求https
Edraw Max9.0快捷键
input与form出现换行
如何使用chromedriver写爬虫
angular官网toast
chkrootkit 编译报错
对apk进行反编译可以得到哪些信息
微信小程序 调用公用组件怎么设置
echart 那个版本有resize
html css 选择器