https://stats.stackexchange.com/questions/156471/imagenet-what-is-top-1-and-top-5-error-rate Your classifier gives you a probability for each class. Lets say we had only "cat", "dog", "house", "mouse" as classes (in
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in this task according to this metric; authors are willing to reveal the method White background = authors are willing to reveal the method Grey background
[OverFeat Integrated Recognition,Localization and Detection using Convolutional Networks] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus and Yann LeCun, 2014 http://arxiv.org/abs/1312.6229 Abstract 利用卷积网络为分类.定位.检测提供了一个统一的框架.论文
原文 ImageNet Classification with Deep ConvolutionalNeural Networks 下载地址:http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf 在这之前,关于AlexNet的讲解的博客已经有很多,我认为还是有必要自己亲自动手写一篇关于AlexNet相关的博客,从而巩固我的理解. 一 介绍 Alex
Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan[‡] & Andrew Zisserman[§] Visual Geometry Group, Department of Engineering Science, University of Oxford {karen,az}@robots.ox.ac.uk 用于大规模图像识别的深度卷积网络 Karen Simonyan[‡] &am
ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 d