numpy.expand_dims(a, axis) Expand the shape of an array. Insert a new axis that will appear at the axis position in the expanded array shape. Parameters: a : array_like Input array. axis : int Position in the expanded axes where the new axis is place
import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt x=torch.unsqueeze(torch.linspace(-1,1,100),dim=1) #torch.linspace本身是一维向量,unsqueeze是增加维度,把一维化为二维 y=x.pow(2)+0.2*torch.rand(x.size()) #0.2*
在numpy库中,经常会出现“秩为1的一维数组”(come from 吴恩达的深度学习,目前还没有搞清楚numpy中如此设计的意图).比如: 注意这里的a的shape是[3] ,既不是 [1,3] 也不是 [3,1].这就说明它既不是行向量也不是列向量,只是一个数组. 但是我们可以用squeeze()和unsqueeze()对其进行操作,比如: 在对这两个函数讲解之前,我们先统一一下定义: In : x.shape Out: torch.Size( [ a , b , c ] ) 这里我们说a是
先看看简单例子: import torch import torch.autograd as autograd import torch.nn as nn import torch.nn.functional as F import torch.optim as optim torch.manual_seed(1) 1 2 3 4 5 6 7 用torch.tensor让list成为tensor: # Create a 3D tensor of size 2x2x2. T_data = [[[1