Torchvision模型微调 本文将深入探讨如何对 torchvision 模型进行微调和特征提取,所有这些模型都已经预先在1000类的magenet数据集上训练完成.将深入介绍如何使用几个现代的CNN架构,并将直观展示如何微调任意的PyTorch模型.由于每个模型架构是有差异的,因此没有可以在所有场景中使用的微调代码样板.然而,研究人员必须查看现有架构,对每个模型进行自定义调整. 将执行两种类型的转移学习:微调和特征提取. 在微调中,从预训练模型开始,更新新任务的所有模型参数,实质上是重新训