首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
torsor19 级高等代数 I每周一题
2024-08-31
复旦高等代数I(19级)每周一题
本学期的高等代数每周一题活动计划从第2教学周开始,到第15教学周结束,每周的周末公布一道思考题(共14道,思考题一般与下周授课内容密切相关),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代数在线课程19级课群”(以课群话题的形式)这两个渠道同时发布.有兴趣的同学可以将每周一题的解答写在纸上.拍成图片,并上传到每周一题对应的课群话题中.本人会定期对每周一题的解答进行批改和评价,并将优秀解答标记出来推荐给全班同学. [问题2019A01] 请用教材第1章“行列式”中
[问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)
[问题2014S12] 设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB\) 的所有特征值都是正实数. [公告] 关于本学期复旦高等代数II(13级)每周一题,新题的公布到第十五教学周为止(即本学期一共公布 15 道思考题), 解答的公布到第十七教学周为止(通常滞后两周). [推荐] 请 13 级的同学到以下网址下载<数学之美,吴军著>一书,希望即将学完一年大学数
复旦高等代数II(18级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代数在线课程18级课群”(以课群话题的形式)这两个渠道同时发布.有兴趣的同学可以将每周一题的解答写在纸上.拍成图片,并上传到每周一题对应的课群话题中.本人会对每周一题的解答进行批改和评价,并将优秀解答标记出来推荐给全班同学. [问题2019S01] 设 $A$ 为 $n$ 阶复方阵, 满足 $(A'
复旦高等代数 II(17级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“谢启鸿高等代数官方博客(以博文的形式)”和“高等代数在线课程17级课群(以课群话题的形式)”这两个渠道同时发布,并通过17级高等代数微信群及时通知大家.有兴趣的同学可以将每周一题的解答写在纸上,并拍成图片上传到该每周一题对应的课群话题中.谢启鸿老师或研究生助教会对每周一题的解答进行批改和评价,并将优
复旦高等代数 I(17级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第二教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1-2道思考题,供大家思考和解答.每周一题通过“谢启鸿高等代数官方博客(以博文的形式)”和“高等代数在线课程17级课群(以课群话题的形式)”这两个渠道同时发布,并通过17级的班级微信群及时通知大家.有兴趣的同学可以将每周一题的解答写在纸上,在课堂上交给谢启鸿老师,或将纸质解答拍成图片,作为附件上传到该每周一题对应的课群话题中作为解答.谢启鸿老师或研究生助
复旦高等代数 I(16级)每周一题
每周一题的说明 一.本学期高代I的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家: 三.请大家先独立思考和解答每周一题,实在做不出的情况下,可以点击参考答案进行学习. *********************************************************** [问题2016A01] 试求下列 $n+1$ 阶行列式的值: $$|A|=\begin{vm
[问题2014S06] 复旦高等代数II(13级)每周一题(第六教学周)
[问题2014S06] 试用有理标准型理论证明13级高等代数I期末考试最后一题: 设 \(V\) 为数域 \(K\) 上的 \(n\) 维线性空间, \(\varphi\) 为 \(V\) 上的线性变换, 且存在非零向量 \(\alpha\in V\) 使得 \[V=L(\alpha,\varphi(\alpha),\varphi^2(\alpha),\cdots).\] 设 \(f(x)\) 是 \(\varphi\) 的特征多项式, 并且 \(f(x)\) 在数域 \(K\) 上至少有两
复旦高等代数II(16级)每周一题
每周一题的说明 一.本学期高代II的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家: 三.请大家先独立思考和解答每周一题,实在做不出的情况下,可以点击参考答案进行学习. *********************************************************** [问题2017S01] 设 $A$ 是 $n$ 阶对合阵, 即 $A^2=I_n$, 证明
CDOJ 1277 智商杯考试 每周一题 div2 二分+数学
智商杯考试 题目连接: http://acm.uestc.edu.cn/#/problem/show/1277 Description 你是一个挂科选手. 你现在正在考试,你很方. 你参加的考试叫做智商杯考试. 这个考试很奇怪,考试一开始就把所有答案全部发给你了,但是并不告诉你答案和考试题目的对应关系,也就是说你根本不知道这个答案是哪个题目的. 由于智商低的原因,你根本看不懂题目,所以从题目来推断答案究竟属于哪个题目是不可能的-- 但是别慌,你可以向监考老师提问嘛. 智商杯的监考老师可是很人道的
Java实现UVA10131越大越聪明(蓝桥杯每周一题)
10131越大越聪明(蓝桥杯每周一题) [问题描述] 一些人认为,大象的体型越大,脑子越聪明.为了反驳这一错误观点,你想要分析一组大象的数据,找出尽量 多的大象组成一个体重严格递增但 IQ 严格递减的序列. [输入] 输入包含若干大象的数据,每行一头大象,直到输入结束.每头大象的数据包括两个整数:第一个是以千克为 单位的体重,第二个是以整百为单位的 IQ 指数.两个整数均在 1 到 10000之间.输入最多包含 1000 头 大象.两头大象可能有相同的体重,或者相同的 IQ,甚至体重和 IQ 都
[问题2014A01] 复旦高等代数 I(14级)每周一题(第三教学周)
[问题2014A01] 试求下列 \(n\) 阶行列式的值: \[ |A|=\begin{vmatrix} 1 & x_1(x_1-a) & x_1^2(x_1-a) & \cdots & x_1^{n-1}(x_1-a) \\ 1 & x_2(x_2-a) & x_2^2(x_2-a) & \cdots & x_2^{n-1}(x_2-a) \\ \vdots & \vdots & \vdots & \vdots
[问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)
问题2014S01 设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) 达到最大值或最小值的点的集合, 即 \(S=\{(b_1,b_2,\cdots,b_n)\in\mathbb{R}^n\,|\) \(f(x_1,x_2,\cdots,x_n)\leq\)\(f(b_1,b_2,\cdots,b_n)\), \(\forall\,(x_1,x_2,\cdots,x_
[问题2014S03] 复旦高等代数II(13级)每周一题(第三教学周)
[问题2014S03] 设 \(A\in M_n(\mathbb R)\) 是非异阵并且 \(A\) 的 \(n\) 个特征值都是实数. 若 \(A\) 的所有 \(n-1\) 阶主子式之和等于零, 证明: 存在 \(A\) 的一个 \(n-2\) 阶主子式, 其符号与 \(|A|\) 的符号相反. 注 上述问题略微推广了13级缪欣晨同学问我的一道考研试题.
[问题2015S01] 复旦高等代数 II(14级)每周一题(第二教学周)
[问题2015S01] 设 \(M_n(\mathbb{R})\) 是 \(n\) 阶实方阵全体构成的实线性空间, \(\varphi\) 是 \(M_n(\mathbb{R})\) 上的线性变换, 使得对于给定的 \(A,B\in M_n(\mathbb{R})\), 或者 \(\varphi(AB)=\varphi(A)\varphi(B)\) 成立, 或者 \(\varphi(AB)=\varphi(B)\varphi(A)\) 成立. 证明: 或者 \(\varphi(AB)=\var
[问题2015S02] 复旦高等代数 II(14级)每周一题(第三教学周)
[问题2015S02] 设 \(a,b,c\) 为复数且 \(bc\neq 0\), 证明下列 \(n\) 阶方阵 \(A\) 可对角化: \[A=\begin{pmatrix} a & b & & & & \\ c & a & b & & & \\ & c & a & b & & \\ & & \ddots & \ddots & \d
[问题2015S03] 复旦高等代数 II(14级)每周一题(第四教学周)
[问题2015S03] 设 \(g(x)=x^n+a_1x^{n-1}+\cdots+a_{n-1}x+a_n\) 是数域 \(\mathbb{K}\) 上的多项式, \(V\) 是 \(\mathbb{K}\) 上的 \(n\) 维线性空间, \(\varphi\) 是 \(V\) 上的线性变换, \(\alpha_1\neq 0,\alpha_2,\cdots,\alpha_n\) 是 \(V\) 中的向量, 满足 \[\varphi(\alpha_1)=\alpha_2,\,\varph
[问题2015S04] 复旦高等代数 II(14级)每周一题(第五教学周)
[问题2015S04] 设 \(A\) 为 \(n\) 阶方阵, \(C\) 为 \(k\times n\) 矩阵, 且对任意的 \(\lambda\in\mathbb{C}\), \(\begin{pmatrix}A-\lambda I_n\\ C \end{pmatrix}\) 均为列满秩阵. 证明: 对任意的 \(\lambda\in\mathbb{C}\), \(\begin{pmatrix}C \\ C(A-\lambda I_n) \\ C(A-\lambda I_n)^2 \\ \
[问题2015S05] 复旦高等代数 II(14级)每周一题(第六教学周)
[问题2015S05] 设 \(A\) 是 \(n\) 阶复方阵, 证明: \(A\) 可对角化的充分必要条件是 \(A\) 相似于某个如下的循环矩阵: \[C=\begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n\\ a_n & a_1 & a_2 & \cdots & a_{n-1}\\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2}\
[问题2015S06] 复旦高等代数 II(14级)每周一题(第七教学周)
[问题2015S06] 设 \(V\) 是数域 \(\mathbb{K}\) 上的 \(n\) 维线性空间, \(\varphi\) 是 \(V\) 上的线性变换. (1) 求证: 对任一非零向量 \(\alpha\in V\), \(U=L(\alpha,\varphi(\alpha),\varphi^2(\alpha),\cdots)\) 是包含 \(\alpha\) 的最小的 \(\varphi\)-不变子空间. 子空间 \(U\) 称为 \(\alpha\) 关于 \(\varphi\
[问题2015S07] 复旦高等代数 II(14级)每周一题(第八教学周)
[问题2015S07] 设 \(A\) 为 \(n\) 阶复方阵, 证明: 存在 \(n\) 阶非异复对称阵 \(S\), 使得 \(A'=S^{-1}AS\), 即 \(A\) 可通过非异复对称阵相似于其转置 \(A'\). 问题解答请在以下网址下载:http://pan.baidu.com/share/home?uk=103502710#category/type=0
热门专题
python3 web 漏洞扫描
vsto开发wps插件
使用Tomcat和Nginx前后端分离
arcgis连不上网
andtroid中无Support Repository项
openGL 像素 大小 调整
dataframe和series输出结果有什么区别
.net默认启动页在哪
lxc配置cgroup
linux scp 断点续传递
vmware的XP系统如何安装IIS
php新闻系统搜索功能
linux单个用户对文件的权限设置
ububtu提示没有git命令
canopen pdo 报文组成
VirtualBox 桥接获取不到IP
macbook 磁盘工具 装WIN 手动分区
eclipses tomcat项目起动两次
raw10转RGB QT
office--解压密码