1.梯度上升优化 1). 伪代码: 所有回归系数初始化为1-------------------weights = ones((colNum,1)) 重复r次: 计算整个数据集的梯度gradient 使用alpha*gradient更新回归系数的向量 返回回归系数weights 2). 迭代r次的代码: for k in range(r): #heavy on matrix operations h = sigmoid(dataMatrix*weights) #matrix mult error
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80