迁移学习两种类型: ConvNet as fixed feature extractor:利用在大数据集(如ImageNet)上预训练过的ConvNet(如AlexNet,VGGNet),移除最后几层(一般是最后分类器),将剩下的ConvNet作为应用于新数据集的固定不变的特征提取器,输出特征称为CNN codes,如果在预训练网络上是经过ReLUd,那这些codes也要经过ReLUd(important for performance):提取出所有CNN codes之后,再基于新数据集训练一个
附上代码加数据地址 https://github.com/Liuyubao/transfer-learning ,欢迎参考. 一.Inception-V3模型 1.1 详细了解模型可参考以下论文: [v1] Going Deeper with Convolutions, 6.67% test error http://arxiv.org/abs/1409.4842 [v2] Batch Normalization: Accelerating Deep Network Training by Re
迁移学习研究综述 Sinno Jialin Pan and Qiang Yang,Fellow, IEEE 摘要: 在许多机器学习和数据挖掘算法中,一个重要的假设就是目前的训练数据和将来的训练数据,一定要在相同的特征空间并且具有相同的分布.然而,在许多现实的应用案例中,这个假设可能不会成立.比如,我们有时候在某个感兴趣的领域有个分类任务,但是我们只有另一个感兴趣领域的足够训练数据,并且后者的数据可能处于与之前领域不同的特征空间或者遵循不同的数据分布.这类情况下,如果知识的迁移做的成功,我们将