首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
viterbi算法实现
2024-09-05
维特比算法(Viterbi)-实例讲解(暴力破解+代码实现)
1.简介 维特比算法是一个通用的求序列最短路径的动态规划算法,也可以用于很多其他问题,比如:文本挖掘.分词原理.既然是动态规划算法,那么就需要找到合适的局部状态,以及局部状态的递推公式.在HMM中,维特比算法定义了两个局部状态用于递推. 第一个局部状态是在时刻i隐藏状态为i所有可能的状态转移路径i1,i2.......it中的最大概率 第二个局部状态由第一个局部状态递推得到. 2.算法详解 (1)从点S出发,对于第一个状态X1的各个节点,不妨假定有n1个,计算出S到它们的距离d(S,X1i),其
HMM Viterbi算法 详解
HMM:隐式马尔可夫链 HMM的典型介绍就是这个模型是一个五元组: 观测序列(observations):实际观测到的现象序列 隐含状态(states):所有的可能的隐含状态 初始概率(start_probability):每个隐含状态的初始概率 转移概率(transition_probability):从一个隐含状态转移到另一个隐含状态的概率 发射概率(emission_probability):某种隐含状态产生某种观测现象的概率 HMM模型可以用来解决三种问题: 参数(StatusSet
隐马尔可夫模型(HMM)及Viterbi算法
HMM简介 对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑. 本文将通过具体形象的例子来引入该模型,并深入探究隐马尔可夫模型及Viterbi算法,希望能对大家有所启发. 隐马尔可夫模型(HMM,hidden Markov model)是可用于标注问题的统计学模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM模型在实际的生活和生产中有着广泛的应用,包括语音识别,自
隐马尔可夫(HMM)、前/后向算法、Viterbi算法
HMM的模型 图1 如上图所示,白色那一行描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,蓝紫色那一行是各个状态生成可观测的随机序列 话说,上面也是个贝叶斯网络,而贝叶斯网络中有这么一种,如下图: 代表:c确定时a和b独立.(c为实心圆代表:c已经被确定) 这时,如果把z1看成a,x1看成b,z2看成c的话,则因为第一个图的z1是不可观测的(所以z1是空心圆),也就是没确定,则x1和z2就一定有联系. 进一步,如果把z2.x2合在一起看成c的话,则x1和z2.x2就一定有联系,则x1和x
ZH奶酪:隐马尔可夫模型学习小记——forward算法+viterbi算法+forward-backward算法(Baum-welch算法)
网上关于HMM的学习资料.博客有很多,基本都是左边摘抄一点,右边摘抄一点,这里一个图,那里一个图,公式中有的变量说不清道不明,学起来很费劲. 经过浏览几篇博文(其实有的地方写的也比较乱),在7张4开的草稿纸上写公式.单步跟踪程序,终于还是搞清楚了HMM的原理. HMM学习过程: 1.搜索相关博客: 隐马尔可夫模型[博客](图示比较详细,前部分还可以,后部分公式有点乱):http://www.leexiang.com/hidden-markov-model HMM简介.forward算法和vite
Viterbi算法和隐马尔可夫模型(HMM)算法
隐马尔可夫模型(HMM)及Viterbi算法 https://www.cnblogs.com/jclian91/p/9954878.html HMM简介 对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑. 本文将通过具体形象的例子来引入该模型,并深入探究隐马尔可夫模型及Viterbi算法,希望能对大家有所启发. 隐马尔可夫模型(HMM,hidden Markov model)是可用于标
隐马尔可夫模型(HMM)及Viterbi算法
HMM简介 对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑. 本文将通过具体形象的例子来引入该模型,并深入探究隐马尔可夫模型及Viterbi算法,希望能对大家有所启发. 隐马尔可夫模型(HMM,hidden Markov model)是可用于标注问题的统计学模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM模型在实际的生活和生产中有着广泛的应用,包括语音识别,自然语言处理,
隐马尔可夫模型及Viterbi算法
隐马尔可夫模型(HMM,hidden Markov model)是可用于标注问题的统计学模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM模型主要用于语音识别,自然语言处理,生物信息,模式识别等领域. 引入 某天,你的女神告诉你说,她放假三天,将要去上海游玩,准备去欢乐谷.迪士尼和外滩(不一定三个都会去). 她呢,会选择在这三个地方中的某几个逗留并决定是否购物,而且每天只待在一个地方.根据你对她的了解,知道她去哪个地方,仅取决于她去的上一个地方,且是否购物的概率仅取决
基于Noisy Channel Model和Viterbi算法的词性标注问题
给定一个英文语料库,里面有很多句子,已经做好了分词,/前面的是词,后面的表示该词的词性并且每句话由句号分隔,如下图所示 对于一个句子S,句子中每个词语\(w_i\)标注了对应的词性\(z_i\).现在的问题是,再给定一个句子S',生成每个词\(w'_i\)的词性\(z'_i\) 也就是要求使得概率\(P(Z|S)\)最大的\(Z\),由贝叶斯定理可得 \[ \begin{align*} P(Z|S)&=\frac{P(S|Z)P(Z)}{P(S)}\\ &\propto P(S|Z)·P(
Viterbi 算法 Python实现 [NLP学习一]
最近思考了一下未来,结合老师的意见,还是决定挑一个方向开始研究了,虽然个人更喜欢鼓捣.深思熟虑后,结合自己的兴趣点,选择了NLP方向,感觉比纯粹的人工智能.大数据之类的方向有趣多了,个人还是不适合纯粹理论研究 :).发现图书馆一本语言处理方面的书也没有后,在京东找了一本书--<NLP汉语自然语言处理原理与实践>,到今天看了大约150页,发现还是很模糊,决定找点代码来看. 从最简单的分词开始,发现分词的库已经很多了,选择了比较轻巧的jieba来研究.看了一下GitHub的基本介绍,突然感觉:我次
隐马尔科夫模型及Viterbi算法的应用
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4335810.html 一个例子: 韦小宝使用骰子进行游戏,他有两种骰子一种正常的骰子,还有一种不均匀的骰子,来进行出千. 开始游戏时他有2/5的概率出千. 对于正常的骰子A,每个点出现的概率都是1/6. 对于不均匀的骰子B,5,6两种出现的概率为3/10,其余为1/10. 出千的随机规律如下图所示: 我们观测到的投掷结果为:ob={1,3,4,5,5,6,6,3,2,6} 请判断韦小宝什么
HMM模型和Viterbi算法
https://www.cnblogs.com/Denise-hzf/p/6612212.html 一.隐含马尔可夫模型(Hidden Markov Model) 1.简介 隐含马尔可夫模型并不是俄罗斯数学家马尔可夫发明的,而是美国数学家鲍姆提出的,隐含马尔可夫模型的训练方法(鲍姆-韦尔奇算法)也是以他名字命名的.隐含马尔可夫模型一直被认为是解决大多数自然语言处理问题最为快速.有效的方法. 2.马尔可夫假设 随机过程中各个状态St的概率分布,只与它的前一个状态St-1有关,即P(St|S1,S2
Viterbi算法
clc;clear all;close all; Start_Pi = [-1,-1];State_k = ['H','L'];% 转移矩阵Transition_matrix = [-1,-1.322;-1.322,-0.737];% 0 H L % H -1 -1% L -1.322,-0.373 % 序列中包含字母ACTG sequence = ['A','C','G','T']; Emission_matrix = [-2.322,-1.737,-1.737,-2.322; -1.737,
[转] 隐马尔可夫(HMM)、前/后向算法、Viterbi算法 再次总结
最近工作需要优化LSTM-CRF经典模型中的维特比解码部分,发现对维特比一直是个模糊概念,没有get到本质,搜了一圈,发现一篇好文,mark 博主不让转载,mark个地址吧: https://blog.csdn.net/xueyingxue001/article/details/52396494
维特比算法(Viterbi Algorithm)
寻找最可能的隐藏状态序列(Finding most probable sequence of hidden states) 对于一个特殊的隐马尔科夫模型(HMM)及一个相应的观察序列,我们常常希望能找到生成此序列最可能的隐藏状态序列. 1.穷举搜索 我们使用下面这张网格图片来形象化的说明隐藏状态和观察状态之间的关系: 我们可以通过列出所有可能的隐藏状态序列并且计算对于每个组合相应的观察序列的概率来找到最可能的隐藏状态序列.最可能的隐藏状态序列是使下面这个概率最大的组合: Pr(观察序列|隐藏
viterbi维特比算法和隐马尔可夫模型(HMM)
隐马尔可夫模型(HMM) 原文地址:http://www.cnblogs.com/jacklu/p/7753471.html 本文结合了王晓刚老师的ENGG 5202 Pattern Recognition课程内容知识,和搜集的资料和自己理解的总结. 1 概述 隐马尔可夫模型(Hidden Markov Model,HMM)是结构最简单的贝叶斯网,这是一种著名的有向图模型,主要用于时序数据建模(语音识别.自然语言处理等数据在时域有依赖性的问题). 如果考虑t时刻数据依赖于0到t-1时间段的所有数
维特比算法(Viterbi)
维特比算法(Viterbi) 维特比算法 编辑 维特比算法是一种动态规划算法用于寻找最有可能产生观测事件序列的-维特比路径-隐含状态序列,特别是在马尔可夫信息源上下文和隐马尔可夫模型中.术语“维特比路径”和“维特比算法”也被用于寻找观察结果最有可能解释相关的动态规划算法.例如在统计句法分析中动态规划算法可以被用于发现最可能的上下文无关的派生(解析)的字符串,有时被称为“维特比分析”. 中文名 维特比算法 外文名 Viterbi Algorithm 提出时间 1967年 提出者 安德鲁·维特比
CRF(条件随机场)与Viterbi(维特比)算法原理详解
摘自:https://mp.weixin.qq.com/s/GXbFxlExDtjtQe-OPwfokA https://www.cnblogs.com/zhibei/p/9391014.html CRF(Conditional Random Field),即条件随机场.经常被用于序列标注,其中包括词性标注,分词,命名实体识别等领域. Viterbi算法,即维特比算法.是一种动态规划算法用于最可能产生观测时间序列的-维特比路径-隐含状态序列,特别是在马尔可夫信息源上下文.隐马尔科夫模型.条件随机
基于隐马尔科夫模型(HMM)的地图匹配(Map-Matching)算法
文章目录 1. 1. 摘要 2. 2. Map-Matching(MM)问题 3. 3. 隐马尔科夫模型(HMM) 3.1. 3.1. HMM简述 3.2. 3.2. 基于HMM的Map-Matching 3.3. 3.3. Viterbi算法 4. 4. 相关部分论文工作 4.1. 4.1. A HMM based MM for wheelchair navigation 4.2. 4.2. MM for low-sampling-rate GPS trajectories 4.3. 4.3.
算法系列:HMM
隐马尔可夫(HMM)好讲,简单易懂不好讲. 用最经典的例子,掷骰子.假设我手里有三个不同的骰子.第一个骰子是我们平常见的骰子(称这个骰子为D6),6个面,每个面(1,2,3,4,5,6)出现的概率是1/6.第二个骰子是个四面体(称这个骰子为D4),每个面(1,2,3,4)出现的概率是1/4.第三个骰子有八个面(称这个骰子为D8),每个面(1,2,3,4,5,6,7,8)出现的概率是1/8. <img src="https://pic4.zhimg.com/435fb8d2d675d
算法设计手冊(第2版)读书笔记, Springer - The Algorithm Design Manual, 2ed Steven S.Skiena 2008
The Algorithm Design Manual, 2ed 跳转至: 导航. 搜索 Springer - The Algorithm Design Manual, 2ed Steven S.Skiena 2008 文件夹 1 介绍 2 算法设计 3 数据结构 4 排序和搜索 5 图遍历 6 加权图 7 组合搜索与启示式 8 DP 9 Intractable问题与近似算法 10 如何设计算法 11 数据结构 12 数值问题 13 组合问题 14 图问题:P 15 图问题:困难的 16 计算几
热门专题
abb机器人安全区的作用
excel表格中散点图怎样分组
stopwatch使用手册
MySQL高并发 查询高
mysql如何使用逗号作为分隔符分开字段
elasticsearch修改field的字符串类型
qt tableview中表头背景颜色怎么设置
linux查看核心数
mybatis调用FUNCTION
vue找到div上面增加div
openstack修改页面布局
netcore部署手册
tcp/UDP转发工具
appium 微信小程序 元素无法获取
ubuntu bind9配置
windows和Ubuntu互相ping不通
标准的html文档结构
虚拟机安装ubuntu一直卡在启动界面
unity界面怎么调成暗色
dmac dma控制器