论文链接: https://arxiv.org/pdf/1512.02325.pdf 代码下载: https://github.com/weiliu89/caffe/tree/ssd Abstract We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of boun
By Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg. Introduction SSD is an unified framework for object detection with a single network. You can use the code to train/evaluate a network for o
This results in a significant improvement in speed for high-accuracy detection(59 FPS with mAP 74.3% on VOC2007 test, vs Faster-rcnn 7 FPS with mAP 73.2% or YOLO 45 FPS with mAP 63.4%) 图1 SSD和其它算法的性能比较 一.SSD网络总体架构 图2 SSD网络架构(精简版) 图3 SSD网络架构(细节版) SSD算
Densenet的改良—PeleeNET Pelee: A Real-Time Object Detection System on Mobile Devices 论文地址:https://arxiv.org/abs/1804.06882 Peleenet专注于优化小型网络,针对densenet的结构做出了改良,达到了目前最先进的水准.在已有的在移动设备上执行的深度学习模型例如 MobileNet. ShuffleNet 等都严重依赖于在深度上可分离的卷积运算,而缺乏有效的实现.在本文中,来自加
caffe ssd 错误描述: AttributeError: 'module' object has no attribute 'LabelMap' SSD from caffe.proto import caffe_pb2 ImportError: No module named caffe.proto 解决方法在用voc2007和voc2012的数据训练基于caffe的SSD模型的时候,我们需要将图片数据转换成lmdb格式,用到的脚本文件是SSD源码里面提供的create_data.sh(
https://blog.csdn.net/WZZ18191171661/article/details/79444217 论文题目:SSD: Single Shot MultiBox Detector 论文链接:论文链接 论文代码:Caffe代码点击此处 This results in a significant improvement in speed for high-accuracy detection(59 FPS with mAP 74.3% on VOC2007 test, vs