首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
Wannafly挑战赛绿魔法师
2024-09-08
[牛客Wannafly挑战赛27D]绿魔法师
description newcoder 给你一个空的可重集合\(S\). \(n\)次操作,每次操作给出\(x\),\(k\),\(p\),执行以下操作: \(opt\ 1\):在S中加入x. \(opt\ 2\):输出 \[\sum_{y\in S}gcd(x,y)^k\] data range 所有输入的数都是小于\(10^5+1\)的正整数. solution 考场降智系列 对于一个\(x\),其\(gcd(x,y)\)有\(O(d(x))\le O(\sqrt x)\)个 这里\(d(
Wannafly挑战赛27 D绿魔法师
链接Wannafly挑战赛27 D绿魔法师 一个空的可重集合\(S\),\(n\)次操作,每次操作给出\(x,k,p\),要求支持下列操作: 1.在\(S\)中加入\(x\). 2.求\[\sum_{y\in S}gcd(x,y)^k\ mod\ p\] 所有输入的数不超过\(10^5\). 不是莫比乌斯啊. 做法比较暴力,应该有更好的\(idea\) 首先把\(1\)到\(n\)的每个数的所有因数筛出来,\(nlnn\)即可. 然后考虑怎么算一个数的答案. 首先\(gcd\)意味着最后算入答案
Wannafly挑战赛27 C蓝魔法师
链接Wannafly挑战赛27 C蓝魔法师 给出一棵树,求有多少种删边方案,使得删后的图每个连通块大小小于等于\(k\),\(n,k\leq 2*10^3\) 假设我们正在考虑\(i\)这个子树,那么不和\(i\)连边的内部节点所在联通块大小是不会再发生改变了,所以我们根本不关心内部联通情况,只关心\(i\)的联通情况,因为\(i\)有可能会和父亲连边形成更大的联通块. 考虑\(f_{i,j}\)表示考虑子树\(i\),过子树\(i\)的联通块大小为\(j\)的方案数. 这个是考试的时候设的状态
Wannafly挑战赛27
Wannafly挑战赛27 我打的第一场$Wannafly$是第25场,$T2$竟然出了一个几何题?而且还把我好不容易升上绿的$Rating$又降回了蓝名...之后再不敢打$Wannafly$了. 由于某一场比赛打了一半就咕咕咕了,现在$Rating$已经降得很低了,干脆打一场碰碰运气好了. 差六名就抽到我发奖品了,就当攒点$rp$给联赛好了. T1:http://www.nowcoder.com/acm/contest/215/A 题意概述:给出长度为$n$的序列, 求有多少对数对 $(i,j
Wannafly挑战赛25游记
Wannafly挑战赛25游记 A - 因子 题目大意: 令\(x=n!(n\le10^{12})\),给定一大于\(1\)的正整数\(p(p\le10000)\)求一个\(k\)使得\(p^k|x\)并且\(p^{k+1}\not|x\)的因子. 思路: 枚举\(p\)的每一个质因数\(q\),求出它在\(n!\)出现次数\(/p\)中出现次数,取\(\min\)即可.对于一个质因数\(q\),在\(n!\)中出现的次数等于\(\sum_{i=1}^{\inf}\frac n{q^i}\).
Wannafly 挑战赛 19 参考题解
这一次的 Wannafly 挑战赛题目是我出的,除了第一题,剩余的题目好像对大部分算法竞赛者来说好像都不是特别友好,但是个人感觉题目质量还是过得去的,下面是题目链接以及题解. [题目链接] Wannafly 挑战赛 19 参考题解 命题:周甄陶 Problem A. 队列 Q 将操作离线倒序处理,可以线性效率解决这个问题.看代码很快就能懂了,不再赘述. 时间复杂度:$O(N + Q)$ Problem B. 矩阵 首先看一个问题:有一个长度为 $N$ 的序列 $A$,对于每一个位置 $i$,计算
Wannafly挑战赛21A
题目链接 Wannafly挑战赛21A 题解 代码 #include <cstdio> #include <cmath> #define MAX 1000005 #define Pi 3.14159265 struct Point{ double x,y; void input() { scanf("%lf%lf",&x,&y); } void output() { printf("%f %f\n", x,y); } }p[M
Wannafly挑战赛24游记
Wannafly挑战赛24游记 A - 石子游戏 题目大意: A和B两人玩游戏,总共有\(n(n\le10^4)\)堆石子,轮流进行一些操作,不能进行下去的人则输掉这局游戏.操作包含以下两种: 把石子数为奇数的一堆石子分为两堆正整数个石子: 把两堆石子数为偶数的石子合并为一堆. 若两人都按照最优策略进行操作.求若A先手,最后谁能赢得比赛. 思路: 首先最优策略中一定是将奇数拆成\(1\)和另一个偶数,然后不断将所有偶数进行合并. 因此我们可以统计非\(1\)奇数的个数\(a\)和所有非\(1\)
Wannafly挑战赛25C 期望操作数
Wannafly挑战赛25C 期望操作数 简单题啦 \(f[i]=\frac{\sum_{j<=i}f[j]}{i}+1\) \(f[i]=\frac{f[i]}{i}+\frac{\sum_{j<i}f[j]}{i}+1\) \(\frac{i-1}{i}f[i]=\frac{\sum_{j<i}f[j]+i}{i}\) \(f[i]=\frac{\sum_{j<i}f[j]+i}{i-1}\) 一边求逆元一边dp即可 #include<bits/stdc++.h>
Wannafly挑战赛18B 随机数
Wannafly挑战赛18B 随机数 设\(f_i\)表示生成\(i\)个数有奇数个1的概率. 那么显而易见的递推式:\(f_i=p(1-f_{i-1})+(1-p)f_{i-1}=(1-2p)f_{i-1}+p\) 简化一下,设\(A=1-2p,B=p\)则\(f_i=A\times f_{i-1}+B\) 大力拆...\(f_n=Af_{n-1}+B=A(Af_{n-2}+B)+B=A(A(Af_{n-3}+B)+B)+B...\) 最后\(f_n=\underbrace{(A(A(A(\c
Wannafly挑战赛22游记
Wannafly挑战赛22游记 幸运的人都是相似的,不幸的人各有各的不幸. --题记 A-计数器 题目大意: 有一个计数器,计数器的初始值为\(0\),每次操作你可以把计数器的值加上\(a_1,a_2,\ldots,a_n\)中的任意一个整数,操作次数不限(可以为\(0\)次),问计数器的值对\(m\)取模后有几种可能. 思路: 由裴蜀定理易得,答案即为\(\frac m{\gcd(m,a_1,a_2,\ldots,a_n)}\). 源代码: #include<cstdio> #include
【Wannafly挑战赛4】F 线路规划 倍增+Kruskal+归并
[Wannafly挑战赛4]F 线路规划 题目描述 Q国的监察院是一个神秘的组织.这个组织掌握了整个帝国的地下力量,监察着Q国的每一个人.监察院一共有N个成员,每一个成员都有且仅有1个直接上司,而他只听从其上直接司的命令.其中1号成员是监察院的院长,这个庞然大物的主人.由于时代的进步,监察院议会决定升级组织的旧式通信器,安装最新的反侦测通信器.他们拿出了M组线路方案,其中第i组线路方案可以用一个四元组(x[i].y[i].k[i].w[i])描述,表示第x[i]号成员可以安装与y[i]号成员的直
Wannafly挑战赛18 E 极差(线段树、单调栈)
Wannafly挑战赛18 E 极差 题意 给出三个长度为n的正整数序列,一个区间[L,R]的价值定义为:三个序列中,这个区间的极差(最大值与最小值之差)的乘积. 求所有区间的价值之和.答案对\(2^{32}\)取模. 题解 如果只有一个区间,我们可以枚举区间右端点,当右端点向右移动,左端点在[x, r]的一些区间的值会发生改变,可以用单调栈和线段树维护. 至于三个区间,可以用八棵线段树维护选中的某几个区间想乘的值. 代码 #include<bits/stdc++.h> using names
Wannafly挑战赛26-F. msc的棋盘(模型转化+dp)及一类特殊的网络流问题
题目链接 https://www.nowcoder.com/acm/contest/212/F 题解 我们先考虑如果已知了数组 \(\{a_i\}\) 和 \(\{b_i\}\),如何判断其是否合法. 很显然我们可以使用网络流,具体建图如下:从源点 \(s\) 向每一个行对应的结点连边,容量为 \(a_i\):每一个行对应的结点向每一个列对应的结点连边,容量为 \(1\):每一个列对应的结点向汇点 \(t\) 连边,容量为 \(b_i\).那么 \(\{a_i\}\) 与 \(\{b_i\}\)
Wannafly挑战赛21:C - 大水题
链接:Wannafly挑战赛21:C - 大水题 题意: 现在给你N个正整数ai,每个数给出一“好数程度” gi(数值相同但位置不同的数之间可能有不同的好数程度).对于在 i 位置的数,如果有一在j位置的数满足 j < i 且 ai=aj,则你可以将位于[i,j]闭区间内的序列评为“好序列”,然后获得∑gk(j≤k≤i)(此闭区间内“好数程度”之和)分数. 注意: 在所有情况下,每个数都只能被一个”好序列”包含(只能与其他相应数被评为”好序列”一次):在符合要求的情况下,”好序列”的评定次数不受
Wannafly挑战赛4. B
Wannafly挑战赛4. B 题意:求子区间异或和,要求区间长度在l到r之间,并且为偶数 题解:对于每一位算贡献,可以分奇偶来记录,计算的时候只加上奇偶性相同的就保证了为偶数,从大于l的点开始每次++,从大于r的点每次--,记录二进制上所有权值和 代码: #include<bits/stdc++.h> #define db double #define ll long long #define vec vector<ll> #define Mt vector<vec>
Wannafly挑战赛2_D Delete(拓扑序+最短路+线段树)
Wannafly挑战赛2_D Delete Problem : 给定一张n个点,m条边的带权有向无环图,同时给定起点S和终点T,一共有q个询问,每次询问删掉某个点和所有与它相连的边之后S到T的最短路,询问之间互相独立(即删除操作在询问结束之后会立即撤销),如果删了那个点后不存在S到T的最短路,则输出-1. n,q <= 10^5 Solution : 注意到题中所给的是DAG,首先可以找出图中结点的拓扑序.对于删除掉某个点之后,若仍存在一条从S到T的最短路,那么对应到拓扑序中,必然有一条边跨过了
【Wannafly挑战赛29F】最后之作(Trie树,动态规划,斜率优化)
[Wannafly挑战赛29F]最后之作(Trie树,动态规划,斜率优化) 题面 牛客 题解 首先考虑怎么计算\([l,r]\)这个子串的不同的串的个数. 如果\(l=1\),我们构建\(Trie\)树然后第\(i\)层的点的个数就是\([1,i]\)的答案. 如果\(l\)要向右移动一位,显然就是我们要把最上面那一层给删掉. 那么我们暴力对\(Trie\)树进行合并,因为每个点最多只会被合并一次,所以复杂度是\(O(|\sum|*tot)\)的,其中\(tot\)是\(Trie\)树点数,\(
【Wannafly挑战赛24E】旅行
[Wannafly挑战赛24E]旅行 题面 牛客 题解 首先有一个非常显然的\(dp\):我们直接把\(s\rightarrow t\)的路径抠出来然后设\(f_{i,j}\)表示到第\(i\)个点,目前余数为\(j\)的方案数. 但是这样子复杂度显然是不对的,我们想办法快速合并对于某个点\(u\),\(s\rightarrow u\),\(t\rightarrow u\)的答案. 一般这个点\(u\)都是\(lca(s,t)\)但是我们这道题有一个特别神仙的思路就是将这个点\(u\)设为\(s
牛客wannafly 挑战赛14 B 前缀查询(trie树上dfs序+线段树)
牛客wannafly 挑战赛14 B 前缀查询(trie树上dfs序+线段树) 链接:https://ac.nowcoder.com/acm/problem/15706 现在需要您来帮忙维护这个名册,支持下列 4 种操作: 插入新人名 si,声望为 a 给定名字前缀 pi 的所有人的声望值变化 di 查询名字为 sj 村民们的声望值的和(因为会有重名的) 查询名字前缀为 pj 的声望值的和 题解:一个非常明显的线段树操作,前缀可以看作是区间更新,区间查询,给定名字就是单点更新,单点查询,字典树上
Wannafly挑战赛5 A珂朵莉与宇宙 前缀和+枚举平方数
Wannafly挑战赛5 A珂朵莉与宇宙 前缀和+枚举平方数 题目描述 给你一个长为n的序列a,有n*(n+1)/2个子区间,问这些子区间里面和为完全平方数的子区间个数 输入描述: 第一行一个数n 第二行n个数表示序列a 输出描述: 输出一个数表示答案 示例1 输入 6 0 1 0 9 1 0 输出 11 备注: 1 <= n <= 100000 0 <= ai <= 10 思路 用前缀和来求任意字段的和 长度为n的序列a[1],a[2], ….,a[n] 有前缀和prefix_s
热门专题
windows下编译ffmpeg
matlab 霍夫直线检测
使用gitlab怎么解决代码冲突
ansible如何定义全局变量
MySQLdistinct根据那个字段去重
android seekbar thump 图片大小
ntc 电阻 ad623
Oracle Probider for OLE DB 驱动
安卓开发发送信息时NullPointerException
ShellExecute 空格
wlan参数配置2.4g
linux 加载 dtb文件
python怎么把字符串中每三个连续字母分成一组
WKWebView.title 监听
office2021 volume 改retail
如何在html里面对vue的子组件进行外部调用
oracle11g 查看表空间大小
fliezilla无法读取目录跟防火墙有关系吗
linux中编辑文件怎么移动到后面编辑
duilib拖动控件