首先介绍高斯混合模型: 高斯混合模型是指具有以下形式的概率分布模型: 一般其他分布的混合模型用相应的概率密度代替(1)式中的高斯分布密度即可. 给定训练集,我们希望构建该数据联合分布 这里,其中是概率,并且,用表示可能的取值. 因此,我们构建的模型就是假设是由生成,而是从中随机选择出来的,那么就服从个依赖于的高斯分布中的一个.这就是一个高斯混合模型 是潜在随机变量,即它是隐藏的或者观察不到的,这将使得估计问题变得棘手. 上面公式太多,作一个总结,总体意思是关于的条件分布符合高斯分布(即正态分布)