首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
windows内核情景分析 usb
2024-09-03
[11]Windows内核情景分析---设备驱动
设备驱动 设备栈:从上层到下层的顺序依次是:过滤设备.类设备.过滤设备.小端口设备[过.类.过滤.小端口] 驱动栈:因设备堆栈原因而建立起来的一种堆栈 老式驱动:指不提供AddDevice的驱动,又叫NT式驱动 Wdm驱动:指提供了AddDevice的驱动 驱动初始化:指IO管理器加载驱动后,调用驱动的DriverEntry.AddDevice函数 设备栈中上层设备与下层设备的绑定关系不是一对一,而是一对多.一个设备可以同时绑定到N个下层设备上去,而一个下层设备,也可以同时被N个上层设备绑定,但
几个常用内核函数(《Windows内核情景分析》)
参考:<Windows内核情景分析> 0x01 ObReferenceObjectByHandle 这个函数从句柄得到对应的内核对象,并递增其引用计数. NTSTATUS ObReferenceObjectByHandle( IN HANDLE Handle, IN ACCESS_MASK DesiredAccess, IN POBJECT_TYPE ObjectType,IN KPROCESSOR_MODE AccessMode, OUT PVOID* Object, OUT POBJEC
[1]windows 内核情景分析---说明
本文说明:这一系列文章(笔记)是在看雪里面下载word文档,现转帖出来,希望更多的人能看到并分享,感谢原作者的分享精神. 说明 本文结合<Windows内核情景分析>(毛德操著).<软件调试>(张银奎著).<Windows核心编程>.<寒江独钓-Windows内核安全编程>.<Windows PE权威指南>.<C++反汇编与逆向分析揭秘>以及ReactOS操作系统 (V0.3.12)源码,以<Windows内核情景分析>为
windows内核情景分析之—— KeRaiseIrql函数与KeLowerIrql()函数
windows内核情景分析之—— KeRaiseIrql函数与KeLowerIrql()函数 1.KeRaiseIrql函数 这个 KeRaiseIrql() 只是简单地调用 hal 模块的 KfRaiseIrql() 函数,返回原来的 IRQL 写入 KeRaiseIrql() 的第 2 个参数里,将它写回 C 代码如下: VOID KeRaiseIrql(KIRQL NewIrql, PKIRQL OldIrql) { KIRQL Irql = KfRaiseIrql(NewIrql); *
[14]Windows内核情景分析 --- 文件系统
文件系统 一台机器上可以安装很多物理介质来存放资料(如磁盘.光盘.软盘.U盘等).各种物理介质千差万别,都配备有各自的驱动程序,为了统一地访问这些物理介质,windows设计了文件系统机制.应用程序要访问存储在那些物理介质上的资料时,无需直接访问,只需借助文件系统即可对其有效访问.各种物理介质的存储方式千差万别,文件系统则按照'文件'的概念,把要存储的资料以文件为单位进行存放,然后,读取的时候也以文件为单位进行读取.当应用程序要访问资料时,只需指明'文件名+文件内偏移',文件系统自然就能找到实际
[7] Windows内核情景分析---线程同步
基于同步对象的等待.唤醒机制: 一个线程可以等待一个对象或多个对象而进入等待状态(也叫睡眠状态),另一个线程可以触发那个等待对象,唤醒在那个对象上等待的所有线程. 一个线程可以等待一个对象或多个对象,而一个对象也可以同时被N个线程等待.这样,线程与等待对象之间是多对多的关系.他们之间的等待关系由一个队列和一个'等待块'来控制,等待块就是线程与等待目标对象之间的纽带. WaitForSingleObject可以等待那些"可等待对象",哪些对象是'可等待'的呢?进程.线程.作业.文件对象.
[4]Windows内核情景分析---内核对象
写过Windows应用程序的朋友都常常听说"内核对象"."句柄"等术语却无从得知他们的内核实现到底是怎样的, 本篇文章就揭开这些技术的神秘面纱. 常见的内核对象有: Job.Directory(对象目录中的目录).SymbolLink(符号链接),Section(内存映射文件).Port(LPC端口).IoCompletion(Io完成端口).File(并非专指磁盘文件).同步对象(Mutex.Event.Semaphore.Timer).Key(注册表中的键).T
[15]Windows内核情景分析 --- 权限管理
Windows系统是支持多用户的.每个文件可以设置一个访问控制表(即ACL),在ACL中规定每个用户.每个组对该文件的访问权限.不过,只有Ntfs文件系统中的文件才支持ACL. (Ntfs文件系统中,每个文件的ACL是作为文件的一个附加属性保存在文件中的). 不仅ntfs文件支持ACL机制,每个内核对象也支持ACL,不过内核对象的ACL保存在对象头部的安全属性字段中,只存在于内存,对象一销毁,ACL就跟着销毁.因此,内核对象的ACL是临时的,文件的ACL则是永久保存在磁盘上的.文件的ACL由文件
[2]windows内核情景分析--系统调用
Windows的地址空间分用户模式与内核模式,低2GB的部分叫用户模式,高2G的部分叫内核模式,位于用户空间的代码不能访问内核空间,位于内核空间的代码却可以访问用户空间 一个线程的运行状态分内核态与用户态,当指令位于用户空间时,就表示当前处于内核态,当指令位于内核空间时,就处于内核态. 一个线程由用户态进入内核态的途径有3种典型的方式: 1. 主动通过int 2e(软中断自陷方式)或sysenter指令(快速系统调用方式)调用系统服务函数,主动进入内核 2. 发生异常,被迫进入内核 3. 发生硬
[13]Windows 内核情景分析 --- 网络通信
典型的基于tcpip协议套接字方式的网络通信模块层次: 应用程序 socket api WS2_32.dll socket irp Afd.sys tdi irp Tcpip.sys 回调函数接口 各Ndis中间层过滤驱动 回调函数接口 小端口驱动 中断交互操作 网卡 应用程序调用WS2_32.dll中的socket api,socket api在内部生成socket irp发给afd.sys这个中间辅助驱动层,afd.sys将socket irp转换成tdi irp发给tcpip协议驱动,协议
[8]windows内核情景分析--窗口消息
消息与钩子 众所周知,Windows系统是消息驱动的,现在我们就来看Windows的消息机制. 早期的Windows的窗口图形机制是在用户空间实现的,后来为了提高图形处理效率,将这部分移入内核空间,在Win32k.sys模块中实现.这个模块作为一个扩展的内核模块,提高了一个扩展额系统服务表,专用于窗口图形操作,相应的,这个模块中添加了一个扩展系统调用服务表Shadow SSDT,以及一个扩展的系统调用服务表描述符表:KeServiceDescriptorTableShadow.(系统中 不仅有两
[5]windows内核情景分析---进程线程
本篇主要讲述进程的启动过程.线程的调度与切换.进程挂靠 进程的启动过程: BOOL CreateProcess ( LPCTSTR lpApplicationName, // LPTSTR lpCommandLine, // command line string LPSECURITY_ATTRIBUTES lpProcessAttributes, // SD LPSECURITY_ATTRIBUTES lpThreadA
[3]windows内核情景分析--内存管理
32位系统中有4GB的虚拟地址空间 每个进程有一个地址空间,共4GB,(具体分为低2GB的用户地址空间+高2GB的内核地址空间) 各个进程的用户地址空间不同,属于各进程专有,内核地址空间部分则几乎完全相同 虚拟地址如0x11111111, 看似这8个数字是一个整体,其实是由三部分组成的,是一个三维地址,将这个32位的值拆开,高10位表示二级页表号,中间10位表示二级页表中的页号,最后12位表示页内偏移(2^12=4kb),因此,一个虚拟地址实际上是一个三维地址,指明了本虚拟地址在哪个二级页表,
[12]Windows内核情景分析 --- MDI
Mdl意为'内存映射描述符'.'缓冲描述符',一个mdl就代表一个缓冲.(任意一块物理内存,可以同时映射到用户地址空间和系统地址空间的) 设备IO方式分为三种:缓冲方式.直接IO方式.直接方式 缓冲方式:将用户空间中的数据拷贝到内核缓冲,将内核缓冲中的数据拷贝到用户空间,效率低,适合少量数据交换 直接IO方式:将用户空间中的内存通过MDL机制映射到系统地址空间,效率高,适合大数据交换 直接方式:直接使用用户空间地址,效率最高,但不安全. 向设备写数据的操作通过下面的内核API执行,我们看: NT
[10]Windows内核情景分析---中断处理
中断处理 每个cpu有一张中断表,简称IDT. IDT的整体布局:[异常->空白->5系->硬](推荐采用7字口诀的方式重点记忆) 异常:前20个表项存放着各个异常的描述符(IDT表不仅可以放中断描述符,还放置了所有异常的异常处理描述符,0x00-0x13) 保留:0x14-0x1F,忽略这块号段 空白:接下来存放一组空闲的保留项(0x20-0x29),供系统和程序员自己分配注册使用 5系:然后是系统自己注册的5个预定义的软中断向量(软中断指手动的INT指令) (0x2A-0x2E 5
[9]Windows内核情景分析 --- DPC
DPC不同APC,DPC的全名是'延迟过程调用'. DPC最初作用是设计为中断服务程序的一部分.因为每次触发中断,都会关中断,然后执行中断服务例程.由于关中断了,所以中断服务例程必须短小精悍,不能消耗过多时间,否则会导致系统丢失大量其他中断.但是有的中断,其中断服务例程要做的事情本来就很多,那怎么办?于是,可以在中断服务例程中先执行最紧迫的那部分工作,然后把剩余的相对来说不那么重要的工作移入到DPC函数中去执行.因此,DPC又叫ISR的后半部.(比如每次时钟中断后,其isr会扫描系统中的所有定时
[6]Windows内核情景分析 --APC
APC:异步过程调用.这是一种常见的技术.前面进程启动的初始过程就是:主线程在内核构造好运行环境后,从KiThreadStartup开始运行,然后调用PspUserThreadStartup,在该线程的apc队列中插入一个APC:LdrInitializeThunk,这样,当PspUserThreadStartup返回后,正式退回用户空间的总入口BaseProcessStartThunk前,会执行中途插入的那个apc,完成进程的用户空间初始化工作(链接dll的加载等) 可见:APC的执行时机之一
windows内核情景分析之中断处理(毛德操)[转]
中断处理 每个cpu有一张中断表,简称IDT. IDT的整体布局:[异常->空白->5系->硬](推荐采用7字口诀的方式重点记忆) 异常:前20个表项存放着各个异常的描述符(IDT表不仅可以放中断描述符,还放置了所有异常的异常处理描述符,0x00-0x13) 保留:0x14-0x1F,忽略这块号段 空白:接下来存放一组空闲的保留项(0x20-0x29),供系统和程序员自己分配注册使用 5系:然后是系统自己注册的5个预定义的软中断向量(软中断指手动的INT指令) (0x2A-0x2E5个系
[16]Windows内核情景分析 --- 服务管理
随时可以看到任务管理器中有一个services.exe进程,这个就是系统的服务控制管理进程,简称SCM 这个进程专门用来管理服务(启动.停止.删除.配置等操作) 系统中所有注册的服务都登记在\HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services键下,这个键专门叫做'服务键',服务键下面的每个子键代表一个服务,记录了各个服务的信息. 每个服务可以是独立的服务,也可以位于某个服务组内.用户不仅可以注册服务,还可以注册服务组,并指定服务与服务组之间的
Linux内核情景分析之异常访问,用户堆栈的扩展
情景假设: 在堆内存中申请了一块内存,然后释放掉该内存,然后再去访问这块内存.也就是所说的野指针访问. 当cpu产生页面错误时,会把失败的线性地址放在cr2寄存器.线性地址缺页异常的4种情况 1.如果cpu访问的行现地址在内核态,那么很可能访问的是非连续区,需要vmalloc_fault处理. 2.缺页异常发生在中断或者内核线程时,直接失败,因为不可修改页表 3.地址在一个区间内,那就可能是已经物理地址映射了但权限问题(错误处理)或者其物理地址没有分配(分配物理内存) 4.如果找到一个在线性地址
热门专题
.net core json序列化
centos7本地yum源对应mysql版本
Bitmap image转换
springboot访问jsp文件
java导出功能设置列不可编辑
java获取tomcat项目路径
一次一台阶或两台阶java
windows cpu绑定
scala判断数据类型例题
ES 分片代码如何实现
LOOPNE指令功能说明
集成学习 Committee voting method
winform listview绑定双击事件
无法打开文件“qgis_core.lib”
xlwings打开excel
WPF如何产生随机数并且保存
spark dataframe map操作
labview波形图历史数据保存
element-ui手动上传文件
uniapp 计算某个元素的高度 顶部安全距离