为什么要用深度学习模型?除了它更高精度等原因之外,还有一个重要原因,那就是它是目前唯一的能够实现“端到端”的模型.所谓“端到端”,就是能够直接将原始数据和标签输入,然后让模型自己完成一切过程——包括特征的提取.模型的学习.而回顾我们做中文情感分类的过程,一般都是“分词——词向量——句向量(LSTM)——分类”这么几个步骤.虽然很多时候这种模型已经达到了state of art的效果,但是有些疑问还是需要进一步测试解决的.对于中文来说,字才是最低粒度的文字单位,因此从“端到端”的角度来看,应该将直
详细代码已上传到github: click me Abstract: Sentiment classification is the process of analyzing and reasoning the sentimental subjective text, that is, analyzing the attitude of the speaker and inferring the sentiment category it contains. Traditional mac
参照当Bert遇上Kerashttps://spaces.ac.cn/archives/6736此示例准确率达到95.5%+ https://github.com/CyberZHG/keras-bert/blob/master/README.zh-CN.md 示例实现 # ! -*- coding:utf-8 -*- import json import numpy as np import pandas as pd from random import choice from keras_be
今天给大家写广义混合效应模型Generalised Linear Random Intercept Model的第一部分 ,混合效应logistics回归模型,这个和线性混合效应模型一样也有好几个叫法: Mixed Effects Logistic Regression is sometimes also called Repeated Measures Logistic Regression, Multilevel Logistic Regression and Multilevel Bina