学习率的调整会对网络模型的训练造成巨大的影响,本文总结了pytorch自带的学习率调整函数,以及其使用方法. 设置网络固定学习率 设置固定学习率的方法有两种,第一种是直接设置一些学习率,网络从头到尾都使用这个学习率,一个例子如下: optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9) 第二种方法是,可以针对不同的参数设置不同的学习率,设置方法如下:这里给subnet2子结构设置的学习率为0.01 ,如果对某