1.输出XGBoost特征的重要性 from matplotlib import pyplot pyplot.bar(range(len(model_XGB.feature_importances_)), model_XGB.feature_importances_) pyplot.show() XGBoost 特征重要性绘图 也可以使用XGBoost内置的特征重要性绘图函数 # plot feature importance using built-in function from xgboo
import pandas as pd import xgboost as xgb import operator from matplotlib import pylab as plt def ceate_feature_map(features): outfile = open('xgb.fmap', 'w') i = 0 for feat in features: outfile.write('{0}\t{1}\tq\n'.format(i, feat)) i = i + 1 outfil
在XGBoost中提供了三种特征重要性的计算方法: ‘weight’ - the number of times a feature is used to split the data across all trees. ‘gain’ - the average gain of the feature when it is used in trees ‘cover’ - the average coverage of the feature when it is used in trees 简单
一.概述 Andrew Ng:Coming up with features is difficult, time-consuming, requires expert knowledge. "Applied machine learning" is basically feature engineering( 吴恩达, 人工智能和机器学习领域国际最权威学者之一:提取特征是困难的,耗时的,需要丰富的专家知识."应用机器学习"从根本上来说就是特征工程) 业界广泛流传: