欢迎关注博主主页,学习python视频资源 https://blog.csdn.net/q383700092/article/details/53763328 调参后结果非常理想 from sklearn.model_selection import GridSearchCV from sklearn.datasets import load_breast_cancer from xgboost import XGBClassifier from sklearn.model_selection
tree based ensemble algorithms 主要介绍以下几种ensemble的分类器(tree based algorithms) xgboost lightGBM: 基于决策树算法的分布式梯度提升框架 GBDT(Gradient Boosting Decison Tree) 随机森林 Why is it called random forest 决策树 tree based ensemble algorithms 原始的Boost算法是在算法开始的时候,为每个样本赋上一个权重
https://www.zybuluo.com/Dounm/note/1031900 GBDT算法详解 http://mlnote.com/2016/10/05/a-guide-to-xgboost-A-Scalable-Tree-Boosting-System/ XGboost: A Scalable Tree Boosting System论文及源码导读 2016/10/29XGboost核心源码阅读 2016/10/05XGboost: A Scalable Tree Boosting S
xgboost入门非常经典的材料,虽然读起来比较吃力,但是会有很大的帮助: 英文原文链接:https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/ 原文地址:Complete Guide to Parameter Tuning in XGBoost (with codes in Python) 译注:文内提供的代码和运行结果有一定差异,可以从这里下